
Object - Based
Computing

VOLUME 1, NUMBER 1, JUNE 1992

400 WEST ERIE, SUITE 402
CHICAGO, IL 60610

Published Monthly

A programmer’s guide to object based
computing on the NeXT Computer.

PREMIER
ISSUE

editorsDesk
Welcome to our first issue

The first issue of any new publication is
a difficult time. While the vision for
starting the publication, and its purpose
is clear -- in our case to provide a forum
for NeXT programmers to discuss
object-oriented programming and inter-
personal computing (Object-Based
Computing for short) -- the publication
has no readers as yet.

Any good publication is considered to be
so because it has carefully listened to the
needs of its readers. As a new publica-
tion we have no readers to guide us
toward “the good,.” so our first attempt
should be seen as an initial throw at the
dart board -- a first attempt to judge dis-
tance and speed.

For us to improve our aim, and become a
valuable asset to you, we need your
judgement. Please send mail, electronic
messages, and do not hesitate to call with
comments on our publication. We want
to know what you think of what we have
done and, more importantly, what you
want us to do to improve.

In the months ahead I plan to use this col-
umn to tell you about the comments I
have received and let you know what we
are doing to act upon them. Each month
I will be trying to incorporate a few of
your comments into the newsletter so
that we can do a better and better job of
hitting the bull’s-eye with the NeXT pro-
gramming community.

The best way to reach us is through elec-
tronic mail. If you do not currently have
access to mail I strongly encourage you
to change this situation. There are a num-
ber of different services which can pro-
vide mail access from your machine to
the CIX network (or Commercial Inter-
net) and from there to the rest of the
world. We happen to use PSI which costs
a mere $25 per month for store and for-
ward mail access.

Thank you for becoming a reader of
OBC and I will look forward to your
messages.

Ted Shelton, Editor
Object-Based Computing

ems@its.com

thisIssue
A little about the articles in this issue.

This first issue of Object-Based Comput-
ing owes a great deal to Dan McCreary
and his Minneapolis based NeXT devel-
opment group. A conversation with Dan
four months ago first caused me to think
of creating this newsletter. And now, our
first issue contains three articles from
members of his new company, Integrity
Solutions, Inc.

The first of a series of six articles on
object-oriented computing appears in
this issue. Written by Dan McCreary of
Integrity Solutions, Inc. this series repre-
sents the first part of a new book on
Object-Based Computing which focuses

on the NeXT computer. It is a pleasure to
include this serialized version of an out-
standing book in our publication.

By Lionel P. Aboulkheir, also a member
of the Integrity Solutions staff, we have
an article on the “Linguistics of Object-
Oriented Programming.”

Finally, a second article by Dan
McCreary exploring some of the reasons
behind the industry switch to object ori-
ented development environments titled
“Object-Oriented Programming: The
Probable Person Period.”

I hope that you enjoy reading this first
issue of OBC as much as we have
enjoyed starting this new enterprise.

nextIssue

Object-Based Computing (pt. 2)
NeXT/OOP: A Case Study

usernamed: A Network Daemon
Flexible Object Design

index

editorsDesk 1
thisIssue 1

objectCatalog 10

features

Object-Based Computing (pt. 1) 2
Linguistics of Object-Oriented
Programming 7
Object Oriented Programming:
The Probable Person Period 8

OBC 2

Object-Based Computing
Dan McCreary - Integrity Solutions

(This is the first of six articles on Object-
Oriented programming)

When [the Mark 1 was] first built, a pro-
gram was laboriously inserted and the
start switch pressed. Immediately the
spots on the display tube entered a mad
dance. In early trials it was a dance of
death leading to no useful result, and
what was even worse, without yielding
any clue as to what was wrong. But one
day it stopped and there, shining brightly
in the expected place, was the expected
answer.

F.C. Williams, June 21, 1948

All of us, professionals as well as lay-
men, must consciously break the habits
we bring to thinking about the computer.
Computation is in its infancy. It is hard to
think about computers of the future with-
out projecting onto them the properties
and the limitations of those we think we
know today. And nowhere is this more
true than in imagining how computers
can enter the world of education.

Seymour Papert, Mindstorms

Keeping Competitive in the
Information Age

The quotes above are significant in two
ways. The first quote gives us a glimpse
at the staggering rate that computers
have progressed in the last four decades.

The second, by Seymour Papert, shows
that we must constantly re-think the way
we solve problems because computers
constantly remove the limitations we
have become used to. As we move into
an information based economy we find
that the more an individual thinks of and
uses computers as a competitive tool, the
greater the advantage gained.

The popular media in our society often
talks of the dawning “Information Age”
though rarely is it defined. What do we
mean when we talk about the informa-
tion age? Table 1 is an outline of some of
the ages of man.

There are two interesting ideas that we
can learn from this table. First, from
early primitive times through the indus-
trial revolution and finally into the
present information age we can see that
the rate of change is increasing.

And second, with each new age, the
skills needed to excel in our society have
changed. To succeed in early times we
needed to be strong, fast and have endur-
ance for tracking our prey. But as we
started specializing we became mutually
dependant and started to live in larger
social units. This caused languages to
flourish and placed demands on parts of
our brains that required the ability to
communicate through oral and written
symbols. Because of our written culture,
knowledge began to accumulate. Each
generation built on the work of previous
generations and added their own new
contributions. Now we are at a stage in
history where in order to make signifi-

cant contributions to our knowledge base
we often spend a third of our lives
extracting the existing information from
our written heritage. One of the most
valuable components of our society is
our educated human resources. We are
now in the information age. An age
where in the near future, most of the pop-
ulation of our planet will be involved in
the creation, dissemination and transla-
tion of information.

Skills for the Information Age
What are the skills we need to be com-
petitive in the information age? Many
say that one of the essential skills will be
the ability to derive meaning from data.
Meanings can be found by creating and
combining views of data that give us
insight into underlying trends. We call
these views abstractions.

If we look at the way people have used
computers in the past, we see that there is
a natural tendency for people to take
things they understand well and create
abstractions of them on the computer.
Examples of this include the word pro-
cessor, which is an abstraction of the
standard office typewriter, and the
spreadsheet which is a abstraction of a
calculator. In each case, our computer
based abstractions allow us new free-
doms to manipulate objects in a more
flexible way. For example, with a type-
writer, if we wanted to change the mar-
gins on a page we would have to re-type
the entire page. With a word processor
we have the ability to make many
changes anywhere in a page without hav-
ing to re-enter the text of that page.

Creating Innovative Abstractions
Although the word processor is a great
productivity tool, it provides no real new
innovations into the way people think.
Innovative tools can be created when we
realize our computer based abstractions
do not have the same restrictions that the
real world objects have. That is why the
first spreadsheet was considered the first
innovative use of a personal computer.
The author of the first PC based spread-
sheet (VisiCalc for the Apple II) realized
that the restrictions of a single calculator
were artificial. Why not have an entire
array of them? Why not let them all pass

Age Years Ago New Skills Emphasized

Hunter/Gatherer 1,000,000? Strength, Speed, Endurance

Agriculture 100,000? Understanding Environment

Skilled Craftsman 1,000? Large Motor Skills

Industrial Revolution 200? Small Motor Skills

White Collar Worker 100? Communication Skills

Information Age 30? Abstract Reasoning

Table 1: The Ages of Man

OBC 3

on their calculations to other cells? And
with each of these innovations, we not
only change the way we interact with our
abstractions on the computer but we
change the way we think. We change our
cognitive models. We begin to mentally
visualize a series of calculations in a
mental picture of a spreadsheet, even
when we are far away from the computer
screen. And that is what object oriented
programming is all about: It drastically
changes the way people think. They
learn to create mental abstractions of
objects around them. They find relation-
ships between old and new objects. They
learn how objects interact. And they
make new discoveries about the world
around them because of the new ways
the computer has taught them to think.

Lets examine the spreadsheet example
again. Current implementations of
spreadsheets force the user to put data
and calculations in rows and columns.
Relationships are based on location. But
we are not limited to a matrix of charac-
ters on most of the new bit mapped
screens. We should be able to create rela-
tionships based on connections between
data and the calculations on that data. By
dragging these objects around on the dis-
play we change the way we view the data
but do not change the relationships
between the data and the calculations we
perform on it. We now have a new set of
constraints. These constraints do not
include restricting data to location. We
can change a row of data to be a column
and we can move the column around on
the page. Now our cognitive models of
understanding the relationships between
the data and their operations must
change based on the new constraints.

Our task is to learn two skills. The first is
to be able to quickly create computer
based abstractions of the world around
us and integrate these abstractions into
real world problems. The second is to
have the ability to understand the power
of the new computer systems and not
limit our abstractions to be the same lim-
its as the ones in the physical world or on
other less powerful computer systems.
We need to teach the ability to use cre-
ativity to create innovative views of our
world. This ability to “break the chains”

of previous abstractions and go a step
beyond is one of the essential skills of
the information age.

Object Based Computing is Creating
Abstractions

So what does this have to do with Object
Based Computing? Object Based Com-
puting is the process of creating and inte-
grating graphic abstractions of the world
around us. It is not just a programming
technique but a new way of structuring
information and programs. It is a new
cognitive style1. And if we are to be
competitive in the information age we
need to master these new cognitive
styles.

The Blurring Distinction Between Com-
puter Programmers and Computer Users

As we create more of these objects with
graphical interfaces we will also find that
they are not only powerful but they can
be easy to use. One of the most signifi-
cant aspects of object oriented program-
ming is that by encapsulating
information you build programming sys-
tems that require very little training to
use. These will consist of “tool-kits” of
objects which are used by pointing to
them with a mouse and dragging them
into the application you are building. The
objects are then connected together to
create entire applications. Software tool-
kits will dramatically increase the num-
ber of people who can create programs.
Just as the way the user friendly comput-
ers allow non-technical people to use
computers, object based computing will
allow non-technical people to create,
customize and integrate objects into their

1. Presentation by Ed Barbonie,
Summer 1989

environment. And as table 2 shows, tool-
kits are just the latest step in the evolu-
tion of how we create programs.

The striking fact from this table is that
every ten years there have been signifi-
cant changes in the ways we create pro-
grams. Most programmers today
associate punch cards with history
books. And perhaps by the year 2000 we
will think of procedural programming in
the same way: something that was a nec-
essary part of our evolution but so prim-
itive we wouldn't wish it on our worst
enemy.

By the year 2000 I expect to see object
based tool kits so powerful that the ones
we are developing in research labs today
will seem like toys. By then we will take
for granted the presence of full color
interactive video objects, objects that
will communicate with our kitchen
appliances or our stereo. We will have
access to remote objects at our offices,
banks, libraries and our friends in remote
locations. These objects will run over
widely distributed fiber optic networks
exchanging information at billions of
bits per second. I only wish I had a crys-
tal ball to tell us how we will create pro-
grams in 2050!

After we learn object-oriented program-
ming techniques and start teaching oth-
ers, we can put these tools in the hands of
more people. We can empower them to
contribute new objects to our culture at a
rate faster then we could have imagined
a generation ago. The distinction
between users of programs and creators
of programs will blur. To be competitive,
the layperson will be required to custom-
ize programs to fit their problem. Find-
ing the correct object to fit the problem

Decade Method Objects Programmers
1950s Switches/Paper Tape Machine Instructions 100
1960s Punch Cards Assembly Language 1,000
1970s Line Editor FORTRAN code 10,000
1980s Screen Editor Structured code 1,000,000
1990s Mouse Tool-kits 100,000,000
2000 Voice(?) Ultra Tool-kits 1,000,000,000

Table 2: Methods of Software Development

OBJECT-BASED COMPUTING SUBSCRIPTIONS
Annual subscriptions are $28 for a hard copy version, but there will be an introductory rate until June 30th of $12. International
subscriptions are 50% more. The email version is free to people who have hard copy subscriptions and request that the newsletter
be sent by email in addition to or instead of the regular version. If you want to pay by check or money order (preferable) just send
the necessary information payable to:

Information Technology Solutions, Inc. 400 W. Erie Suite 402 Chicago, IL 60610

If you want to pay by Visa or Mastercard you can send the necessary information by email, regular mail or fax. Send email to:
gwkiv@its.com, or fax to (312)664-8409.

The following info is what I need (if you are sending the information by way of email please type the information without labels, it
makes it easier to import it into Dataphile): Name, Address, Phone Number, Fax Number, NextMail, Asciimail (if no Nextmail) and
Credit card type, expiration, and number(if paying by credit card).

will be much like going to the library to
check out a book. We will be able to
search large databases listing the features
and connections to objects. We might
even be able to rent objects that will be
able to communicate with the rest of our
computing environment. We will see
changes in the cognitive skills we need to
effectively use computers. The way we
teach and learn these skills will be vastly
different.

What is Object Based Computing?
Object based computing is a term
brought to my attention by David Stutz,
a NeXT Systems Engineer from the Chi-
cago region. In the context of this text we
shall define object based computing as

“The process of creating and manipulat-
ing computer based abstractions of the
world around us.”

Although that may seem a rather general
definition, object oriented programming
techniques will guide us in this process.
Object based computing deals not just
with the creation of new objects but also
the re-use of and integration of existing
objects to solve new problems. Object
based computing will allow systems
integrators to quickly build custom
applications to solve specialized prob-
lems. Object based computing will end
our current era of monolithic application
based computing where we rely on a sin-
gle program to solve our problems.
Instead of searching for large complex
turn-key existing software to solve our
specific problems we will be able to cre-
ate new applications to solve a variety of
problems.

Benefits of Object Based Computing
The users of the objects we create will
not care as much about the techniques we
use to develop the objects as much as the
benefits such objects bring them. Object
based computing systems have the fol-
lowing benefits:

Customization.
A typical application program which
runs in an object based computing envi-
ronment is actually a collection of coop-
erating objects. These objects are either
supplied by the computer manufacturer,
third party software developers or could
be in the public domain. If a user's needs
do not match the application being run
the user has the opportunity to edit the
application to add or delete objects

which conform to the user's needs. Other
features of object based computing sys-
tems allow you to add and override char-
acteristics of objects you wish to change.

Integration.
In an object based computing environ-
ment all objects are tied together by a
simple communication system called a
message passing system. Messages are
simple structures which contain informa-
tion that is exchanged between all types
of objects local to the system as well as
remote objects. Messages are language
independent so objects can be created in
C, LISP, FORTRAN or assembly lan-
guage. Messaging allows new features to
be integrated into existing programs
without changing the original program.
This allows programs to be easily inte-
grated and allows old programs to take
advantage of new technology without a
great deal of change. An example of this
might be the process of integrating voice
recognition into an existing mail pro-
gram. By adding a voice recognition
object to your application you could sim-
ply tell it to redirect its output of recog-
nized commands to the mail system
using voice messages. You would not
have to change the mail program.

Reusability.
On an object based computing platform,
all objects are related in a hierarchy to
the other objects in the system. This is
known as Inheritance. For example, all
objects which have dimensions on the
screen are a sub-set of the “View” object.

Joe Barello Consulting
NeXT

Computer

Software
Design

Training
System

Administration

4043A 23rd Street
San Francisco, CA 94114
415.647.6398
joeba@jbc.com

OBC 5

All view objects inherit the program
code which manipulates sizes of the
objects on the screen and the order they
are to be displayed. We re-use this object
over and over for every new object we
create which must be displayed on the
screen. Creators of new objects no longer
must start from scratch. By re-using
existing code which has already been de-
bugged and tested we find the productiv-
ity of system integrators rises dramati-
cally.

Standardization.
In an object based environment there is
often a rich set of objects or something
called an application kit which has been
created by the vendor. The application
kit allows a core set of objects to be used
by every developer in all of their pro-
grams. For example, all programs which
require the user to select a new font style
may be able to use standard objects
which query the user for new font infor-
mation. This is great for developers
because they don't have to re-invent a
new font object each time they wish to
include font capabilities in their pro-
gram. It is also very important for the
users. Users need to know how to inter-
act with only one font object. Once the
users have learned how to change the
font in one program they have instantly
learned how to change the font in every
program which uses the standard font
object. This offers a very consistent envi-
ronment across all programs you use.
The time it takes to learn how to use a
new program is dramatically less
because the user expects the same
menus, and the objects will respond
exactly the same way they did in other
programs you have used.

Sharing Objects.
One of the important differences
between integrated Object Based Com-
puting environments and traditional PC
programming environments is that
Object Based Computing systems have
many of the objects and tools to manipu-
late the objects included as an integral
component of the operating system.
They are not added by third party soft-
ware developers as an afterthought.
Because of this, all users can assume a
basic common denominator that the base

objects are always there and can build
new objects on top of them. This lowest
common denominator assures a certain
level of compatibility which allows the
exchange of objects with others who
have the same system. Compare this to
the problems developers of PC software
have with sharing objects. They first
must pick a third party object oriented
compiler and development system. Then
they must purchase a library of objects
which use the compiler. After they have
added objects to the system they can only
exchange those objects with users who
have made the same identical choices.
Each step quickly narrows the potential
base of other people who can share the
objects. So perhaps the greatest innova-
tion Object Based Computing systems
will give us is the unique ability to use
and integrate a large public library of
very high level objects.

Ease of Use.
Most, if not all, of the new Object Based
Computing environments rely heavily on
the use of graphical interfaces. A soft-
ware company developing a library of
objects can put a graphics front end onto
the individual objects and encapsulate
the routines of the object as a iconic but-
ton which a user can manipulate. These
objects can then be integrated into tools
that assemble the objects together in a
point and click environment. Users view
a subroutine library as a graphic “pal-
ette” of objects which are used to “paint”

the user interface of an application simi-
lar to a painter using a pallet of colors to
paint. Using a subroutine library is not
a matter of going through the processes
of editing, compiling, debugging, etc. It
is the process of dragging icons and con-
necting them together. The potential user
community of a subroutine library is not
limited to programmers, but is now open
to anyone who can point and click a
mouse! The distinction between a pro-
grammer, a systems integrator and a user
will begin to blur. This will allow a new
level of extensibility to exist with com-
puter programs. The user will be empow-
ered with the ability to customize their
environment to meet their own specific
needs without the assistance of computer
programmers or systems integrators.

Reliability.
Because objects communicate using
carefully pre-defined and tested mes-
sages, they have a consistent, reliable
and repeatable behavior. The creator of
the objects can assume that the data types
of all incoming messages is correct
because the types of all message argu-
ments are checked by the compiler.
Because data that updates the state of an
object enters through a clearly defined
interface, the range checking can be per-
formed before the state of the object is
changed. Objects can avoid the problems
of internal corruption when some new
and unforeseen end case has occurred.
Objects protect the data inside of them

NFORMATION

OLUTIONS
ECHNOLOGY

I
T
S

SH UT

1-800-394-4487 for information

N e X T t o N e X T
C O M M U N I C A T I O N
VOICE, SOUND, TEXT, FILES...

an ACTIVE communication tool

OBC 6

by allowing the creator of the objects to
automatically be a gate-keeper.

Extensibility.
It is often trivial to extend objects and
add new features as well as modify exist-
ing features without changes in the
objects we started with. The principal
way of doing this is to extend and over-
ride messages that are directed to exist-
ing objects. Inheritance and delegation
allow the creator to customize how mes-
sages are routed through objects. Propri-
etary objects can also be extended and
integrated without the user having access
to the original developer’s source code.

Leveraging Powerful Servers.
One of the side benefits of multi-tasking
environments is the ability to have a
large group of powerful servers available
in the background while your main pro-
gram is running. Servers provide what
their name implies: a group of special-
ized services you don't want to reproduce
in your own objects. Some examples of
servers are SQL database servers (which
take in database queries and return
reports), display servers (which take in
draw commands and return graphic
images), and computational servers
(which do mathematical calculations).
The essential observation is that because
of the messaging architecture all objects
we create can be servers. They can
respond to informational requests and
provide data. This is also known as the
client-server model. Object Based Com-
puting platforms which have integrated
networking can easily extend this model
to servers running on other processors as
well as over local and wide area net-
works.

Network Integration.
When personal computers first became
popular it was rare to find them inte-
grated into a company wide network.
Recently demands are being placed upon
desk-top computers to quickly and trans-
parently access large amounts of infor-
mation within a company and on wide
area networks such as the Internet. By
using an object based computing envi-
ronment with integrated networking you
can take advantage of distributed com-
puting very quickly. Transparent net-

working means every object can access
every byte of information on every mass
storage device on a network. This means
sharing is easy and local users are far less
likely to spend time duplicating informa-
tion. In the end, productivity will rise and
costs will fall.

From Procedural Programming to
Object Oriented Programming

I am assuming that most readers have
been exposed to procedural program-
ming before they have access to Object
Based Computing. Until systems as
powerful as the NeXT computer reach
the hands of the K-12 students, this will
not change. I have found that there are
several pitfalls common for those who
grew up with only a procedural program-
ming perspective.

Object oriented programming using tool-
kits is very easy. It involves actions such
as selecting objects, dragging icons, and
creating connections by drawing lines.
These steps can be mastered by people
with no previous programming back-
ground. In contrast, creating new objects
or extending the objects requires re-
thinking many of the traditional proce-
dural programming assumptions. It can
still be mastered by people with a mini-
mum of programming background, but
the way we create these new structures is
radically different than simply learning
the syntax of another procedural pro-
gramming language.

When I was a college student I learned
Pascal. My first real job required that I
learn C. It took me just a few days to
learn the syntax differences between
Pascal and C. But going from C to
Objective C was a great deal more diffi-
cult, and not because Objective C has a
great deal of new syntax to learn. In fact,
Objective C only adds a handful of new
language constructs. The real difference
is how object oriented programming
forces you to change the way you think.
It took several months of studying text-
books and reading other people's pro-
grams before I understood the power of
the concepts. But once I did, my mind
caught fire with a new understanding. I
felt I had a new powers. I could create
programs with far greater complexity in
a much shorter time. I hope that the same
feeling of power also comes to the reader
of this book. I have worked hard to make
this happen for you in hours, not months.

Top-Down Design
One of the hardest techniques to teach is
the way an experienced object oriented
programmer partitions a problem into
manageable pieces. Researchers such as
the great psychologist Jean Piaget1 have
showed that most people learn new con-
cepts in two ways: by comparing them to
existing concepts and by decomposing

1. Principals of General Psy-
chology. John Wiley and
Sons, Inc., 1980. p. 292.

SpeedDeX

NFORMATION

OLUTIONS
ECHNOLOGY

I
T
S

"...I love this little app..."
-David Grady, Grady Report 2/92

"...a well designed product that offers
a convenient, easy to use solution..."

-M Carling, NeXTWorld Summer/92

1-800-394-4487 for information
1-800-800-6398 to order (NeXTConnection)TM

OBC 7

these new concepts into other structures.
Piaget called these processes assimila-
tion and accommodation. He felt that
they are fundamental to the way we learn
new concepts. Seymour Papert also
showed that we can understand the way
students learn procedural programming
languages such as LOGO by using these
models.1 Papert quotes George Polya2

who urges that whenever approached
with a problem we ask two questions:
Can this problem be subdivided into sim-
pler problems? Can this problem be
related to a problem I already know how
to solve? These are also the principal
design techniques that we use when we
are faced with a task of object creation.

Suppose your task was to create a pro-
gram that modeled the functions of a
plant.The experienced object oriented
programmer would take a look at the
plant and partition it into structures such
as leaves, the stem, and flowers. These
structures would then be analyzed fur-
ther until the problems could be repre-
sented by other objects or by lower level
data structures. In contrast, many other
design methods start by using these
lower level structures and keep assem-
bling them until they start simulating the
higher level structures. They have a col-
lection of data structures and a collection
of algorithms and they build programs
by combining them in whatever way best
suits their problem. The problem is that it
can take a great deal of effort to put the
lower level pieces together before you
see the high level structures. Later, if
your high level structures don't fit the
problem you often need to start over
from scratch. Object based computing
allows you to do a rapid prototype first,
and only when the high level structures
have been validated do you need to
implement the low level structures. This

1. Seymour Papert. Mind-
storms: Children, Comput-
ers and Powerful Ideas.
Basic Books, 1980. This
book is highly recommended
for anyone teaching object
based computing.

2. G. Polya. How to Solve It.
Doubleday-Anchor, Garden
City, N.Y., 1954.

later step is known as the code polishing
phase.

All of this theory is perhaps interesting
but won't mean much until you run into
these problems yourself.

Next month’s article will discuss tools
for building applications in an Object-
Based Computing development environ-
ment.

Linguistics of Object-Oriented
Programming and NeXT Objective-
C Protocols
by Lionel P. ABOULKHEIR, Integrity
Solutions, Inc.

As you become familiar with the concept
of Objects and messaging, you begin to
build more and more sophisticated
objects. This brings you to the most dif-
ficult part of every elaborate system of
communication, its linguistics.

Because the Objective-C messaging
metaphor has brought a new dimension
to programming languages, it has come
closer to the general concept of a real
language. Objective-C has added new
levels of complexity to programming,
even as it simplifies it. Just like a real lan-
guage, Objective-C must be expanded
when it becomes difficult to communi-
cate a new concept using the existing lin-
guistic structures. For example, in the
NeXTSTEP 3.0 implementation of
Objective-C, the addition of protocols is
one of the features that was needed to
make programs that are more powerful
than those that have been made in the
past.

The art of using the object-based para-
digm, as opposed to the technique of
object-oriented programming, pertains
to the language: the messages, the syn-
tax, the words... You can think of objects
as entities which you can send memos to
(messages), and then they can reply with
a memo of their own.

However, just sending memos back and
forth is not true communication. Prob-
lems are solved much more easily when

people have a frame of reference to work
within and more complex ways of com-
municating.

In real world discussions about problems
to be solved, such as a mathematical
problem, you must first provide a con-
text, and a hypothesis, and follow some
procedure along which intermediary
results would be proved; eventually, it
would lead to some conclusion, or mes-
sage, which could be the starting point
for a new larger procedure. It is the same
kind of procedure you would use if you
want to invite your neighbor to a party.
First, you would have to contact him.
Then he would probably have to talk to
his wife, maybe arrange his schedule,
and make any necessary steps to give you
an answer at some point. If you want to
invite all of your neighbors, you will
have to do the same thing with each one
of them.

In other words, goals which are depen-
dent on many other actions make it very
difficult, if not impossible, to deliver the
necessary information within a single
message. You will have to follow a cer-
tain procedure, or protocol, to get a sin-
gle reply: you cannot get a reply from
your neighbor, until he consults with his
wife; nor can you start your party if
nobody knows about it.

The same idea applies to the language
you use for the objects you create. An
elaborate object would have to know
some sort of information before it can
reply to a complex message. And when a
number of objects cooperate, they will
have to get this information in a certain
order. This is what brought about the
NeXT Objective-C Protocol in the 3.0
release. As stated in NeXT compiler 3.0
Release Notes:

(see the release notes for more technical
information)

Protocols allow you to organize
related method into groups that
form high-level behaviors. This
gives library builders a tool to
identify sets of standard proto-
cols, independent of the class
hierarchy. Protocols provide

OBC 8

language support for the reuse
of design (i.e. interface),
whereas classes support the
reuse of code (i.e. implementa-
tion). Well designed protocols
can help users of an application
framework, when learning or
designing new classes.

The necessity for such an extension
probably arose from the DBKit design.
How could one send a complex SQL
expression using object orientation?
SQL is itself a language, and as such
contains many possible messages. If a set
of objects are used to represent this lan-
guage, they will have to cooperate in a
certain fashion: To message a Select
statement one has to provide the name of
the tables it involves (Entities in DBKit),
the name of the columns that are to be
selected (Attributes) and the where
clause, which may include joins
(DBProperties). Before the database
object (a DBDatabase) can reply to a
select message (the selectData: method
which is never sent directly), the internal
state of all these objects has to be set (by
sending them proper messages). Without
protocols this sort of application would
be a almost impossible.

Because of Objective-C's features, such
as the newly introduced protocols,
dynamic binding, and Objective-C's use
of distributed objects, NeXT is becom-
ing the leader in this kind of communica-
tion. Just as in the real world, as the lines

of communication are improved, the end
result is improved as well; and protocols
are one way NeXT has created to make
objects communicate with each other in
more sophisticated ways, without mak-
ing objects any more complex to create.

Object Oriented Programming: The
Probable Person Period
Dan McCreary: Integrity Solutions

In his book The Mythical Man Month,
Frederick P. Brooks, Jr. gives his descrip-
tion of the percentages of resources
devoted to various aspects of the devel-
opment of large software projects. From
this analysis we can create the graph seen
at the bottom of this page.

He further breaks the testing and quality
assurance into sub sections of compo-
nent test and system testing each of
which takes about 25% of the total
project resources. Some of us who have
never built production systems are often
shocked by the fact that only about 1/6th
of the total time is dedicated to the pro-
gramming part of a project. Some of us
who have just finished getting final
acceptance on software projects wonder
why we didn't learn from our earlier mis-
takes that testing really takes at least
three times as long as the coding.

Brook's book was published in 1975.
Most of his examples are taken from

IBM System 370 mainframe operating
system software written is assembly lan-
guage. The rules of the game have
changed a lot since then. This article will
look at how Object oriented program-
ming has changed the makeup of
resource allocation for large software
projects.

First lets look at some of the claims made
by the object oriented software vendors
and see how these changes affect the
total software schedule. EDS did a study
a while back showing a 14:1 productivity
gain by using an object oriented system
over traditional systems. We have often
heard our NeXT sales rep. talk about
how NeXTSTEP programmers are 10
times more productive. Lets assume for a
moment that their claims are right.

If we take the graph above and cut the
coding time down by a factor of 10
where does that leave us? Let's assume a
100 hour project before our team learned
the principals of object oriented pro-
gramming. After sending our team to
object oriented programming school and
allowing them to spend a year getting
familiar with the NeXTSTEP AppKit
(you can't re-use what you don't know
exists) our coding task just went from 16
hours down to 1.6 hours and the total
project time went from 100 hours down
to 85.6 hours, a 14% drop in the total
project time. Probably not enough sav-
ings to convince the MIS director to
replace all their IBM-PC systems with

Testing/QA (50%)

Coding - 16%

Functional Specification - 34%

Resource Allocation for Software Projects

OBC 9

NeXT systems. But the story is not so
simple. Lets see how NeXTSTEP also
affects some other aspects of the total
schedule.

Functional Specification
One of the first productivity gains we
notice is the way our staff uses Interface
Builder to help us create functional spec-
ifications. We have developed a set of
“mirage building tools” that allow us to
quickly build a program that looks to an
untrained user like the program is actu-
ally running off a real database. It is in
fact just using ASCII files that we mod-
ify with any ASCII test editor. But, to the
user, they can actually sit down and see
how the user interface will function
when they click on a button, browser,
menu or window.

Interface Builder and our internally built
mirage tools allow us to quickly build

and modify user interfaces based on our
customers needs. In a week or two we
can often go through dozens of mock ups
and ask the end users their preferences.
When we are done we have a program
that serves as our functional specifica-
tion. After we design and implement our
database and hook up the user interface
the user still gets the same user interface
only now it is actually doing what they
want. No surprises. They get exactly
what they asked for. Now that doesn't
mean that end users don't change their
mind. They always do. But with Inter-
face Builder these changes are easy to
make and the user can often see their
requested changes the next day.

This method must be contrasted to the
traditional method discussed by Brooks
where very large functional specifica-
tions are meticulously written and con-
stantly reviewed before the first line of

code is written. This methodology was
critical because it was so hard to change
a program once it was created. By using
object oriented design principals these
changes are not disasters. The rigorous
functional specification rules enforced
by most of the large accounts firms that
also do custom software don't apply to
systems built with NeXTSTEP. Our
experience has been that these firms
spend more time in contract negotiations
with our customers then we spend writ-
ing the programs. When mission critical
applications need to be written, custom-
ers want solutions that they know will
solve their problems, not a 100 page con-
tract that they need to review.

In general I have found that by using the
tools provided with NeXTSTEP, like
interface builder, and by adding our own
mirage builder tools we have reduced the
time for functional specification by 60%.

1-800-394-4487

400 West Erie, Suite 402
Chicago, IL 60610

1: your single source for NeXT! expertise
a: NeXT training programs
b: network installation and system administration
c: custom programming
2: NeXT registered developer with three commercial software products
a: SpeedDeX -- a multimedia information manager
b: SHOUT -- a multimedia intercom
c: WorldClock -- a global clock and alarm

I- T- S \ ' i-te-es \ n,
abbrv. Information Technology Solutions

OBC 10

So the 34 hours we originally spent on
functional specification is now down to
20 hours.

The ability to rapidly re-arrange user
interfaces does have one draw back. If
the end users know how easy it is to
change user interfaces they invariably
ask us to do it and get upset when we
want to bill them additional fees after the
user interface has been finalized. Our
solution is to ask users to initial each
page of functions specification and set
their expectations up front. Because we
can change a user interface easily does
not mean that the underlying database
structures will not need to be changed
when a user changes a functional specifi-
cation..

Testing and Quality Assurance
One of the principal benefits of object
oriented programming is enhanced reli-
ability. By clearly controlling the access
to state variables of your objects by the
methods the object designer provides,
the burden of correctness is moved from
the shoulders of the user to the shoulders
of the person who created the object.
Fortunately for us, with more then 50
pre-tested classes in the NeXT AppKit,
most of our testing job is done for us
before we write our first line of NeXT-
STEP code. Our job as programmers is
to re-use as much of pre-tested code as
possible. By minimizing the number of
new lines of code we create we minimize
the amount of testing we have to do.

Besides reusing pre-tested modules we
also are forced to pay a great deal of
attention to the interfaces between our
objects by the standards enforced by
good object oriented design methodolo-
gies. Many of the complex problems that
used to come up in system test are the
results of unexpected interactions
between objects that have not been tested
together previously under a new data set.
By rigorously defining the methods used
to change the instance variables of each
object we control these interactions and
can easily debug the side effects as they
happen.

My experience with unit testing (testing
of the individual objects) is that it is usu-

ally done in half the time and that system
testing can be done in one third the time.
This means that our 50 hours dedicated
to testing and quality assurance is now
down to about 21 hours, bringing the
total time for the project from 100 hours
down to 20+1.6+21=42.6 hours. This
suggests that projects done with NeXT-
STEP can be done in 42% of the time
that they might take using other systems.

The savings can be increased even fur-
ther by having a very clear functional
specification to start. All of our work
porting existing applications fit into this
category.

Code Maintenance Costs
This analysis does not consider the fan-
tastic cost savings we have found due to
dramatically lower maintenance costs.
We have found over and over again that
new programmers can be assigned the
tasks of fixing bugs or adding new fea-
tures to existing programs with very little
training. We have found that bugs are
much easier to isolate because all the
code in an objects file only deals with
maintaining the state of its instance vari-
ables. Much of our code is inherently self
documenting. It is because of the inher-
ent structure of the NeXTSTEP software
architecture that mission critical applica-
tions developed using the NeXTSTEP
environment are much easier to maintain
and extend.

Summary: Object oriented
design and programming tech-
niques can be applied to all
phases of a software project.
From needs analysis, func-
tional specification, coding,
unit testing and systems test,
all stages of a project can be
dramatically improved not just
in schedules but in the better
end results: the program being
written actually solves the
problems for the end users.
Once object oriented design
principals, tools and lan-
guages are in place the use of a
large pre-tested class library
can dramatically cut develop-
ment time and reduce mainte-
nance costs.

objectCatalog
Companies currently marketing
programming tools and objects for the
NeXT Developer:

Impact Software
210 Lake Street
Ithaca, NY 14850

(607) 277-8623

email: impact@impact.shamen.com

Objective Technologies
Suite 1502
7 Dey Street
New York, NY10007

(212) 227-6767

email: lg@object.com

RDR, Inc.
Suite 350
10600 Arrowhead Dr.
Fairfax VA 22030

(703) 591-8713

email: info@rdr.com

Threaded Technologies
339 Wiltsee Avenue
Loveland OH 45140

(513) 677-2106

email: !uunet!tti!dennisg

We would be happy to list your company
-- please let us know how to list your
company and what objects are available
from your company. Filling out the
object submission form on the next page
will also help us to provide a complete
list of resources for the object based
NeXT developer.

OBC 11

In future issues an important part of this publication will be a descriptive list of com-
mercial and “shareware” objects available to the NeXT Developer community.

Your participation in creating this marketplace of ideas is essential: we’d like to make
it easier ---

TEMPLATE FOR CATALOG SUBMISSIONS

In order to make your lives a little easier we will be using the same template as NeXT
for submissions to our objectCatalog. The information can be mailed, faxed or
emailed to gwkiv@its.com

Object Category

Product Name

Product description here (up to 100 words)

Company Name or University

Street Address

City, State, Zip code, Country

Phone:

E-Mail address:

Pricing Information (including educational discount, if applicable):

Source code available:

Support available:

On-line Help (if a UI object):

Documentation Availability:

Localization Support:

Availability:

Please use one of these category
names for consistency and clarity:
UI Object
Information Display Object
Analytical Tool (includes objects to be
used with Mathematica)
Networking & Telecommunications
Object
Device Driver & Communications
Object
Multimedia Object
Document & Publishing Object
Database Object
Financial Object
Tool & Utilities -- General
Business Graphic
Digitized Sound
Graphic
3D & Rendering Tool
Voice & Speech Object
Telephony & ISDN Object
Text & Language Tool
Scripting & Macro Object
Indexing & Retrieval Object
Workflow Object

Deadline for object submissions:

June 15, 1992

MAIL ADDRESS:

Geordie Korper
Object-Based Computing
400 West Erie, Suite 402
Chicago, IL 60610

FAX: 312.664.8409

EMAIL: gwkiv@its.com

Object - Based
Computing

OBC 12

ENCLOSED:
The Premier Issue of Object-Based Computing --

A resource for the NeXT Programmer

ARTICLES:

Object-Based Computing (Part 1) by Dan McCreary

Linguistics of Object-Oriented Programming by Lionel Aboulkheir

Object Oriented Programming: The Probable Person Period by Dan McCreary

nextIssue
Object-Based Computing (pt. 2)

NeXT/OOP: A Case Study
usernamed: A Network Daemon

Flexible Object Design

Object-Based Computing is published monthly by Information Technology Solutions, Inc.

Information Technology Solutions, Inc. - -- 400 West Erie, Suite 402 - -- Chicago, IL 60610 - -- (800) 394-4487 - -- gwkiv@its.com

Object - Based
Computing

400 WEST ERIE, SUITE 402
CHICAGO, ILLINOIS 60610

