
OBC 12

ENCLOSED:
The Second Issue of Object-Based Computing --

A resource for the NeXT Programmer

ARTICLES:

Object-Based Computing (Part 2) by Dan McCreary

Postscript Window Manipulation byTed Shelton

Object Oriented Programming: The Probable Person Period by Dan McCreary

nextIssue
Object-Based Computing (pt. 2)

NeXT/OOP: A Case Study
usernamed: A Network Daemon

Flexible Object Design

Object-Based Computing is published monthly by Information Technology Solutions, Inc.

Information Technology Solutions, Inc. - -- 400 West Erie, Suite 402 - -- Chicago, IL 60610 - -- (800) 394-4487 - -- gwkiv@its.com

Object - Based
Computing

400 WEST ERIE, SUITE 402
CHICAGO, ILLINOIS 60610

OBC 11

In future issues an important part of this publication will be a descriptive list of com-
mercial and “shareware” objects available to the NeXT Developer community.

Your participation in creating this marketplace of ideas is essential: we’d like to make
it easier ---

TEMPLATE FOR CATALOG SUBMISSIONS

In order to make your lives a little easier we will be using the same template as NeXT
for submissions to our objectCatalog. The information can be mailed, faxed or
emailed to gwkiv@its.com

Object Category

Product Name

Product description here (up to 100 words)

Company Name or University

Street Address

City, State, Zip code, Country

Phone:

E-Mail address:

Pricing Information (including educational discount, if applicable):

Source code available:

Support available:

On-line Help (if a UI object):

Documentation Availability:

Localization Support:

Availability:

Please use one of these category
names for consistency and clarity:
UI Object
Information Display Object
Analytical Tool (includes objects to be
used with Mathematica)
Networking & Telecommunications
Object
Device Driver & Communications
Object
Multimedia Object
Document & Publishing Object
Database Object
Financial Object
Tool & Utilities -- General
Business Graphic
Digitized Sound
Graphic
3D & Rendering Tool
Voice & Speech Object
Telephony & ISDN Object
Text & Language Tool
Scripting & Macro Object
Indexing & Retrieval Object
Workflow Object

Deadline for object submissions:

July 24, 1992

MAIL ADDRESS:

Geordie Korper
Object-Based Computing
400 West Erie, Suite 402
Chicago, IL 60610

FAX: 312.664.8409

EMAIL: gwkiv@its.com

Object - Based
Computing

OBC 10

mands that could use a better user inter-
face?

3.) Now that you have finished the pro-
gram, try it again. This time yourself.
How long do you think an experienced
object based programmer would need to
create a new object? How many lines of
code did you have to enter to make this
program work? How many lines of code
would you need to do this same program
in other graphics or iconic programming
systems?

4.) Instead of just the same action taking
place, what if you wanted to have two
buttons connected up to the same object.
How would you change the above proce-
dure?

NEXT MONTH:

Encapsulation and Inheritance

objectCatalog
Companies currently marketing
programming tools and objects for the
NeXT Developer:

Impact Software
210 Lake Street
Ithaca, NY 14850

(607) 277-8623

email: impact@impact.shamen.com

Objective Technologies
Suite 1502
7 Dey Street
New York, NY10007

(212) 227-6767

email: lg@object.com

RDR, Inc.
Suite 350
10600 Arrowhead Dr.
Fairfax VA 22030

(703) 591-8713

email: info@rdr.com

Threaded Technologies
339 Wiltsee Avenue
Loveland OH 45140

(513) 677-2106

email: !uunet!tti!dennisg

We would be happy to list your company
-- please let us know how to list your
company and what objects are available
from your company. Filling out the
object submission form on the next page
will also help us to provide a complete
list of resources for the object based
NeXT developer.

OBC 9

debug_obj/hello_main.o -
lNeXT_s -lsys_s

We can then enter the following in the
shell:

cd Programming/Hello

hello.debug

The “hello.debug” command causes our
program to be executed. Each time you
press the hello button you should see the
“hello, world” message printed on your
shell output. When you are done select
the “quit” from the hello main menu.

Congratulations! If you made it this far
you have completed the most difficult
section of this entire book: creating your
first object. You have created a structure
which is encapsulated, you have used

Inheritance, your have sent a message
from a user interface object (in this case
a button object), and you have, perhaps
for the first time, used event based pro-
gramming and connection based pro-
gramming tools. It is time to pat yourself
on the back and tell everyone around you
that you have entered the world of Object
Based Computing!

But what was it that we really did? What
did that class browser have to do with re-
using objects? How do I create new
objects that are sub-classes of existing
objects and connect them all together?
How do I get this new object to send
messages to other objects? What if you
wanted to have the output of “printf” go
to a screen text object rather then the
standard output of the shell? These ques-
tions and many more will be explained in
the next chapter. Before we answer them
we need to know a bit more about events

and the way they are handled in the
Application Kit.

Exercises
1.) Create another button and another
instance of the MyHelloClass. Connect
them together and then save. After you
do another make and rerun the program,
what happens to the output?

2.) Change the printf statement to the
line

system(“date”)

You will need to another import file
called <stdlib.h> instead of <stdio.h>.
This will cause the UNIX date command
to be run whenever the button is pressed.
Can you think of any useful UNIX com-

1-800-394-4487

400 West Erie, Suite 402
Chicago, IL 60610

1: your single source for NeXT! expertise
a: NeXT training programs
b: network installation and system administration
c: custom programming
2: NeXT registered developer with three commercial software products
a: SpeedDeX -- a multimedia information manager
b: SHOUT -- a multimedia intercom
c: WorldClock -- a global clock and alarm

I- T- S \ ' i-te-es \ n,
abbrv. Information Technology Solutions

OBC 8

/* Generated by Interface Builder */

#import “MyHelloClass.h”

#import <stdio.h> // add this for
type checking

@implementation MyHelloClass

- helloAction:sender

{

printf(“hello, world \n”); // add this
line

return self;

}

@end

Note that the one additional line which
includes the file <stdio.h> should be

included to get rid of compiler warnings
but is not necessary for the program to
work. To compile we go to the main
Interface Builder menu, select “File” and
“Make” and we will see the following
messages being sent to a UNIX shell:

pushd /dan/Programming/
Hello; make debug; popd

mspdemo> pushd /dan/Pro-
gramming/Hello; make debug;
popd

~/Programming/Hello ~

make hello.debug “OFILE_DIR
= debug_obj” “CFLAGS = -g -
DDEBUG -Wimplicit”

mkdirs debug_obj

cc -g -DDEBUG -Wimplicit -c
MyHelloClass.m -o
debug_obj/MyHelloClass.o

MyHelloClass.m: In method
`helloAction:'

MyHelloClass.m:10: warning:
implicit declaration of
function `printf'

cc -g -DDEBUG -Wimplicit -c
hello_main.m -o debug_obj/
hello_main.o

cc -g -DDEBUG -Wimplicit -
segcreate __ICON __header
hello.iconheader -segcreate
__ICON app /usr/lib/nib/
default_app_icon.tiff -seg-
create __NIB hello.nib hel-
lo.nib -o hello.debug
debug_obj/MyHelloClass.o

OBC 7

This actually requires two smaller steps.
One involves “Saving” your project in a
new directory and the other involves
“unparsing” the files related to our new
custom object. The first step can be done
by going to the main menu and selecting
“Files” followed by “Save”. This will
bring up a save panel from which you
can create the directory and the name of
the file you want to save your work in.
One suggestion would be to enter the
path:

Programming/Hello/
hello.nib

This will create the directories (folders)
for Programming and Hello if they do
not already exist and save your work in
the file “hello.nib”. After you have cre-
ated a directory folder for your work you
will also need a file to keep track of all
your objects and the steps necessary to
compile and link them. This is called a
“project” file. It contains information
similar to a UNIX Makefile. The user
does not need to know what is in the files
other that it contains the “recipe” for
building the program. This information
includes things like instructions for com-
piling, linking and installing the pro-
gram. To create the project file from the
main menu select File and then
“Project...”. It will bring up an inspector
for the project file and tell you there is
currently no project file. To create one
just enter Return or select the OK button.

Our last step is to create the template file
into which we will enter our line of pro-
gram source code. To do this we need to
return to our class editor. Make sure that

“MyHelloClass” is the chosen class
(MyHelloClass must be below the “.h”
icon) and select the Operations pop-up
list and then use the “Unparse” selection.
It will then ask you if you want to add
these files to the project manager. You
should select the default “Yes”. You have
now created all the files you need for the
last step. You should be able to view all
of the files you created from the browser
by selecting the icon view after you are
in the Programming/Hello folder. From
the Workspace Browser, the icon view of
these files should be similar to the Work-
space Browser on top of this page.

Note that the files that have the “~”
(tilde) characters after them are the
backup files created by Interface Builder.
You can revert back to these if you make
a mistake on the current version.

7) Add print command statement and
compile.

Our last step will be to add a two lines of
code to the file MyHelloClass.m and
compile it. This will actually display the
message in the shell window. The line
that will do the work is the following:

printf(“hello, world
\n”);

To edit the file you can double click on
either the line in the project inspector or
the icon in the Browser.

The entire file should look like this after
you have added this line. The two lines
you add are in bold. Comments (which
you don't have to add) are all the text
after the double slashes (//).

NFORMATION

OLUTIONS
ECHNOLOGY

I
T
S

SH UT

1-800-394-4487 for information

N e X T t o N e X T
C O M M U N I C A T I O N
VOICE, SOUND, TEXT, FILES...

an ACTIVE communication tool

OBC 6

object which has a sphere as its icon (the
generic object icon) and below is the text
“MyHelloClass…”.

4) Create an action message for MyHel-
loClass.

We will now create a link between our
button and our object. This link is a
“message” that we will add to our class.
Before we do this we need the Inspector
window. To get this to appear on the
screen we go to the main menu and select
Tools and Inspector. Select the MyHello-
ClassInstance object by clicking it. The
inspector should have a pop-up menu at
the top of it that is, by default, set to
Attributes. Select this pop-up menu and
make the Class selection. In that window
you will see two columns: one for Out-
lets, and one for Actions. We want the
actions selection since pressing our hello
button is technically an “action” caused
by the user clicking the mouse over the
button. To do this, click on the button
below the two columns so that the word
“actions” is in bold. Now type in the
word “helloAction” followed by a
<Return>. When you are done the
Inspector panel should have a single
entry in the action column and the text
“helloAction:” (Note: the colon is auto-
matically added for you at the end).

5) Make the connection from the button
to the instance of the object.

This is done by pointing to the button
and Control-Dragging a line from the
button to the icon in the lower left corner
of the screen labeled “MyHelloClass…”.

As you release the mouse over the object
the inspector will again appear. But this
time the pop-up menu will be changed to
be the connection panel. As each instan-
tiation of an object can have several

actions, we must let IB know which
action we intend to occur when the but-
ton is pressed. After the inspector panel
comes up you must click on the word
“helloAction” in the column on the right
labeled “Actions of the Destination”.
After you have selected it you must then
click on the “Connect” button or enter a
carriage return. A small round knob will
appear next to the message name indicat-
ing that it has been connected.

6) Create Objective C files.

We must write code to display the mes-
sage “hello, world” in a shell window.

SpeedDeX

NFORMATION

OLUTIONS
ECHNOLOGY

I
T
S

"...I love this little app..."
-David Grady, Grady Report 2/92

"...a well designed product that offers
a convenient, easy to use solution..."

-M Carling, NeXTWorld Summer/92

1-800-394-4487 for information
1-800-800-6398 to order (NeXTConnection)TM

OBC 5

objects. It will be different in several
ways from the simple “C” program that
is created to do similar things. This pro-
gram will contain an “Object” that prints
“hello, world” whenever a button is
pressed. After this object is created, we
will be able to re-use this object over and
over again without recompiling the
object. This object will respond to mouse
clicks and will aid our understanding of
event based programming in a later chap-
ter. This object can also be part of an
application object that can later be used
to respond to messages from other pro-
grams.

Our first task is to start a new project
within Interface Builder. If you are
already running Interface Builder with
another project you should go to the
main menu and chose File… and then
Close File. If you are just starting, select
File and New Application as in chapter
2. Our interface will be very simple. It
will only have one button.

This will be connected to one “custom
object” we will call “MyObject”. When
this button is pressed it will run the line
of program that will print a message to
the shell.

We will create the object using the fol-
lowing steps. You are not expected to
understand what is going on in each of

these steps. We will take a detailed look
at each of them in the next chapter.

1) Add a button to the main menu.

To do this, drag the object marked “but-
ton” from the palette menu and drag it
into the main window. You can then dou-
ble click on the text of the button and
type in the word “hello<CR>”. You can
then resize the main window to fit around
the button so your man window will look
like the following:

2) Create a sub-class of the “Object”
class called MyHelloClass.

This can be done by double clicking on
the brief-case icon in the lower left win-
dow labeled “Classes”. This looks like
the icon below:

After you double click this icon a “Class
Browser” will appear that looks like the
figure below.

We will first click the black arrow on the
upper left edge of this browser to go to
the left-most column so that the word
“Object” is the only word showing in the
left column. We then want to select
“Object” and verify that the object was
selected by noting that the word “object”
also appears below the “.h” icon in the
right section of the window. We want to
use the pop-up list above the “.h” icon
labeled “Operations” and select the
“Subclass” button. The text below the
icon should now be “Subclass1”. You
should double click over that text and
change it to be “MyHelloClass”. The
class editor should now show our new
object (see figure on the next page).

Note that we used an uppercase letter to
begin the class name. This is an impor-
tant convention which we will explain in
the next chapter.

 3) Create an instance of the MyHello-
Class.

This is done by clicking on the Opera-
tions pop-up menu of the class browser
and clicking the “Instantiate” selection.
You will now notice that the window in
the lower left corner of the screen has an

OBJECT-BASED COMPUTING SUBSCRIPTIONS
Annual subscriptions are $28 for a hard copy version, but you can save $8 by ordering now and enclosing this coupon with your
order.. International subscriptions are 50% more. The email version is free to people who have hard copy subscriptions and request
that the newsletter be sent by email in addition to or instead of the regular version. If you want to pay by check or money order
(preferable) just send the necessary information payable to:

Information Technology Solutions, Inc. 400 W. Erie Suite 402 Chicago, IL 60610

If you want to pay by Visa or Mastercard you can send the necessary information by email, regular mail or fax. Send email to:
gwkiv@its.com, or fax to (312)664-8409.

The following info is what I need (if you are sending the information by way of email please type the information without labels, it
makes it easier to import it into Dataphile): Name, Address, Phone Number, Fax Number, NextMail, Asciimail (if no Nextmail) and
Credit card type, expiration, and number(if paying by credit card).

(the slider) and CONTROL-DRAG-
GING a connection to the “target object”
(the text).

After you release the mouse over the tar-
get object an Inspector panel will appear
in the lower right corner of the display.
This tells you what types of messages the
destination object can receive. In this
case, select the “takeFloatValue:” mes-
sage. After you have selected the appro-
priate item under the label “actions of the
destination” you must then press the
“Connect” button at the lower right hand
corner of the Inspector panel. A small
round knob will appear next to the mes-
sage name to indicate that the connection
has been made. Now try testing the inter-
face again using the Test Interface selec-
tion of the File menu. When you move
the slider the number in the text object
should change. Note that the default lim-

its of a slider are zero and one. Select
quit when done.

You can change the default values of
objects using the inspector panel. By
selecting the object that you want to
modify and then using the pop-up menu
on the inspector and going to the
attributes selection you can see and mod-
ify the minimum, default and maximum
settings on a slider or other object.

Exercises
1.) Try selecting other palettes. Add a
menu selection and a panel. Have the
menu selection send a “orderFront”:
message to the window.

2.) Try changing the text on the button
object by double-clicking over the text.

3.) Try changing the font of the button
object using the “Font” menu. Can you
get Greek characters to appear using the
symbol font? See the NeXT User Man-
ual for alternate keyboard layouts.

4.) Try using all the different layout
tools. Note that the “Same Size” will
make the second object selected with the
SHIFT-click the size of the first object
selected.

5.) What other palettes would you like to
use? What types of inspectors would
they have? What might an object which
is a front end to a modem look like? How
would you integrate a front end to a SQL
database server into IB?

6.) Many people have commented that
Interface Builder is as easy to use as a
database program with a graphics user
interface such as Hypercard(TM) or
Supercard(TM). Can you create any
arbitrary sets of panels with Interface
Builder and have them send messages to
any other panels? What are the restric-
tions? What can you do with databases
that you can not do with Interface
Builder? What can you do with Interface
Builder that you can not do with database
programs? What are the basic differ-
ences between the output of database
programs and software development
tools like Interface Builder?

Hello World:
Creating a New Class of Objects

Some day, far in the future, we will create
the first being that can speak intelli-
gently. Even odds the first words we hear
will be: “hello, world”.

- Anon

Now that you are familiar with using
tool-kits to create user interfaces, lets
take a look at what we must do to create
one of our own objects. Our first pro-
gram will be very simple and yet very
important. It will have one button that
when pressed will print out the words
“hello, world” in a “UNIX shell” win-
dow. It will demonstrate the foundations
of the actions required to build our own

Joe Barello Consulting
NeXT

Computer

Software
Design

Training
System

Administration

4043A 23rd Street
San Francisco, CA 94114
415.647.6398
joeba@jbc.com

OBC 3

program and for other Interface Builder
tools.

Ignore the menu and controller panel for
a moment and go back to our palettes and
main window. Add a button to our main
window by first pointing to the palettes
panel and dragging the object labeled
“Button” to the upper left corner of the
main application window. You will
notice that immediately after you let go
of the mouse, six “knobs” appear around
the object. These knobs are very similar
to the knobs used in programs like
MacDraw. IB allows you to grab the
knobs with your mouse and drag them.
This will allow you to re-size the button
in any dimension to meet your needs. Try
dragging the lower right had corner
down and to the right till the button is
about two inches wide and an inch high.

Suppose we had sound in our program
and we want to create a graphic equalizer
to control the bass, mid-range and treble
of our sound. The user interface for this
might be a row of knobs that slide up and
down. We call these objects “sliders”.
Our left palette (called the View palette)
has both vertical and horizontal sliders to
choose from. To create a row of vertical
sliders we will drag a vertical slider into
the main window and place it in the
lower left hand corner of the screen.
Rather than resizing the slider by drag-
ging the right middle knob, hold the
Alternate key down at the same time you
drag the knob. You will notice that as the
“rubber-band” line reaches twice the
width of the slider another slider will
appear next to the original. As you ALT-
DRAG further you can get an entire row
of sliders. Create a row that fills about
half the screen.

Now supose we wanted to create a pro-
gram that enters names and phone num-
bers. Lets group each name and number
together in a unit so the user will know
they are related and so that they can be
moved together.

First drag a “Box” object to the upper
right corner of the screen. Resize it to fill
about one fourth of the main window.
Then drag a “form” object, which is a
white text box with the label “Field:” to

the left of it. While the knobs are still
showing on the form, go to the main
menu and select “Edit” and then “Copy”
(or type COMMAND C). Then select
“Paste” (or type COMMAND V). You
should see two forms on top of each
other. Drag the top one to the lower right
of the Box object. Then hold down the
SHIFT key while you click the initial
Field. From the main menu select the
Layout, Align, and Make Column
options. Your forms should now be
directly under each another.

Our last exercise before we test our inter-
face will be to select the edge of the box
we created and from the main menu
select the “Layout” and “Size to Fit”.
You should now see you user interface
look something like the following with
the exception that your interface may
have different spacing between the
objects (see below).

We have shown that the Interface Builder
is a tool that allows you to create user
interface objects that are meticulously
laid out as fast as you can draw the
objects on the screen

But this is only the beginning. The
objects that you have placed in the main
window are more than just graphic
objects. They are software objects. Each
one has a specific function. One such
function would be transferring user-gen-

erated events (such as pressing the
mouse over a button) to a receiving
object which would cause a section of a
program to be executed. To show this,
lets use the “Test Interface” mode of the
Interface Builder. This selection is avail-
able from the “File” command of the
main menu.

Once you are in the test mode you will
find that all of the windows involved in
creating the interface have disappeared
and the only windows left are the ones
that would exist if you were actually run-
ning the application. In this case the
main menu and the main window.

Try pressing the button. Notice that it
will highlight to indicate that it is being
pressed. Try to move the sliders in the
graphic equalizer. Now try typing text
into one of the forms. You should be able
to use the COMMAND-C and COM-
MAND-V keys to copy and paste text
from one form into the other. When you
are done you can select the quit menu
and you will be returned to the build
mode of Interface Builder.

Our next step is to make connections
between objects. To see the effects of this
connection, drag a horizontal slider and a
text box into the middle of your main
window. Now make a connection from
the slider object to the text object. This is
done by pointing to the “source object”

OBC 2

interface (and in some cases, an entire
application) graphically rather than by
writing Objective-C code. With Interface
Builder, you manipulate graphic repre-
sentations of Application Kit objects just
as if you were using a graphics editor to
create a drawing.

NeXT System Reference Manual -
chapter 8, page 1

Let's first get a feeling of what it's like to
build a user interface using tool-kits.
Thismonth’s article will give you a short
guided tour of the Interface Builder. It
assumes you are familiar with a mouse
and have had at least a half hour expo-
sure to an icon based computer such as
the NeXT or a Macintosh. Keep in mind
that although we will be discussing user
interface objects, the idea of using tool-
kits and creating connection based pro-
grams are very general and can be
applied to many other areas.

The NeXT on-line documentation con-
tains over a hundred page description of
and tutorial for the Interface Builder.
(See /NextLibrary/Documentation/
NeXT/SysRefMan/ 08_IntfBuilder.wn)
This chapter is meant to complement that
information. One of the best ways to
learn about the Interface Builder is to
start with this chapter and then later go
through the on-line documentation for
additional details as needed. We will also
give you a more general background on
encapsulation and inheritance in later
chapters, so don't worry if what you are
doing when you sub-class an object is
not crystal clear.

If you have not done so already, drag the
icon form /NextApps/InterfaceBuilder to
you application dock. It should look like
the following:

Once it is on the dock, double click the
mouse button over the icon. The icon
will “highlight” itself for less then ten

seconds and then the following panel
will appear:

This highlighting stage between when
you double click the icon and when the
main menu changes is called the
“launching” stage of a program. During
that time the program is being read off
the disk and loaded into memory. If you
attempt to do other things during a pro-
gram's launch stage the system will usu-
ally react sluggishly.

The panel above is perhaps the most
important single panel you will see in
computing in the 1990's. It is much like
the painters palette. It contains the ele-
ments that you will use in creating your
user interface. We will discuss later at
length how it will affect the way we cre-
ate programs. In this version of Interface
Builder, the top row contains three but-
tons. Initially only the first one is high-
lighted. This is the “views” panel. It con-
tains all user interface objects that
occupy space on the screen.

Try clicking on the object marked “but-
ton” or some other objects and dragging
them to different parts of the screen.
Notice that the selected button will be
highlighted but it will always zoom back
to the palette when the mouse button is

released. The reason is that because we
have not created a new application, there
is no place for the objects to anchor
themselves. The new application will be
the “canvas” on which we will paint our
objects. To create a new application, we
must go to the main Interface Builder
menu, with the letters “IB” on the menu
title bar, and choose the “File” menu fol-
lowed by the “New Application” selec-
tion.

After a new application is created, three
new panels appear on the screen. The
largest is the window titled “My Win-
dow” at the top center section of the
screen. This is the “canvas” on which we
will “paint” our user interface objects.
We often refer to this as our “main win-
dow” because it is usually the first win-
dow to be displayed when a program
launches. There are two other panels that
also appear. One is a small menu to the
left of the screen directly under the main
“IB” menu. This is the menu associated
with the program we are creating. The
last new panel is the one in the lower left
corner of the screen. This is usually titled
“/PATHNAME/Untitled” where PATH-
NAME is the path to your home direc-
tory. This last panel controls which of the
panels on the screen are active. It is the
“controller” for the rest of the panels in

Object - Based
Computing

VOLUME 1, NUMBER 2, JULY 1992

400 WEST ERIE, SUITE 402
CHICAGO, IL 60610

Published Monthly

A programmer’s guide to object based
computing on the NeXT Computer.

July, 1992
Issue #2

editorsDesk
Our second issue!

We received a lot of mail regarding our
first issue -- praise, complements, and a
few complaints as well. The complaints
are actually the most highly cherished
(though we love the complements) since
it is through your criticisms that we can
become more useful and thus BETTER...

One of the topics on which we received
mail had little today with the publication
and more to do with our mailer... Those
of you who received our last issue via
email received a short .eps file as part of
the mail message. This file caused the
rotating words “Object-Based Comput-
ing” to appear on the screen.

A few people wrote nice notes asking
how we had performed this trick and
complementing us. Others felt that this
was a bad thing to do to an unsuspecting
reader. One even asked us not to do this
sort of thing since he did not want his
customers to know that it was possible!

So after all of these comments we have
decided not to ever send out this sort of
executable postscript again but also to
explain how it was done -- so in this issue
there is an article (with the PostScript
code) explaining how one takes over the
screen...

Please write and tell us what kinds of
articles you’d like to see. We are also
looking for article submissions so please

consider sharing some of your ecperi-
ences with the NeXT community.

yours,

Ted Shelton, Editor
Object-Based Computing

ems@its.com

thisIssue
A little about the articles in this issue.

This first issue of Object-Based Comput-
ing owes a great deal to Dan McCreary
and his Minneapolis based NeXT devel-
opment group. A conversation with Dan
four months ago first caused me to think
of creating this newsletter. And now, our
first issue contains three articles from
members of his new company, Integrity
Solutions, Inc.

The first of a series of six articles on
object-oriented computing appears in
this issue. Written by Dan McCreary of
Integrity Solutions, Inc. this series repre-
sents the first part of a new book on
Object-Based Computing which focuses
on the NeXT computer. It is a pleasure to
include this serialized version of an out-
standing book in our publication.

By Lionel P. Aboulkheir, also a member
of the Integrity Solutions staff, we have
an article on the “Linguistics of Object-
Oriented Programming.”

Finally, a second article by Dan
McCreary exploring some of the reasons

behind the industry switch to object ori-
ented development environments titled
“Object-Oriented Programming: The
Probable Person Period.”

I hope that you enjoy reading this first
issue of OBC as much as we have
enjoyed starting this new enterprise.

nextIssue

Object-Based Computing (pt. 2)
NeXT/OOP: A Case Study

usernamed: A Network Daemon
Flexible Object Design

Object-Based Computing (pt. 2)
Dan McCreary - Integrity Solutions

(This is the second of six articles on
Object-Oriented programming)

Interface Builder speeds the creation of
applications by letting you define an

index

editorsDesk 1
thisIssue 1

objectCatalog 10

features

Object-Based Computing (pt. 2) 2
Linguistics of Object-Oriented
Programming 7
Object Oriented Programming:
The Probable Person Period 8

