01909 I ‘obealyd
LOE @UNg ‘ali3 1S9 00V
*ou] ‘suonnjos Abojouydsa] uoneuLIoju|

Kq Aqyuowt paystiqnd st Sunnduio)) pasvg-122(q0
SSV10 1SHId

ISSUE #3
Object-Based Computing

A resource for the
NeXT Programmer

WorldClock will be reviewed in the upcoming issue of NeXTWORLD

WorldClock from ITS

Just $45
and you’ve got all

the time in the world
800 394-4487

SEapplication
SEDirectory
SEFile
SEFileSystem
SENode
SEOS

Threaded Technologies
339 Wiltsee Avenue
Loveland OH 45140

(513) 677-2106

Trillium Sound Research, Inc.

(403) 284 - 9278
manzara@cpsc.ucalgary.ca
products:
Text-to-Speech Kit

T.Y.C. Software, Inc.
(708) 515 - 0668
coco@ihcoco.att.com
products:

SCSI
Versant Object Technology
(415) 329 - 7549
geoff@osc.com
products:

Versant ODBMS

VNPSoftware
(617) 661 - 4292
info@vnp.com
products:
AccessKit

Workstation AG
+41 91 505094
rgi@wag.chation
products:
DBDragger
FuncEdit
Knob

ZGDV Darmstadt
+49 06151 293863
essmann@igd.thg.de
products:
Realtime Voice and
Video Communication

ZippyTech
(412) 421 - 9588
ztech@well.sf.ca.us
products:
InetObjects

REVIEWS:

TOOLS AND OBJECTS

Future issues will include a
descriptive list of tools and
objects available to NeXT
programmers. Reviews of two or
three objects or programming
tools will be featured each
month. SEND A COPY of your
object or tool with associated
literature and documentation
for review to:

Edward Shelton, Editor
Object - Based Computing
c/o ITSolutions
400 West Erie, Suite 301
Chicago, IL 60610

We apologize in advance that
submissions for review cannot
be returned.

We would be happy to list your company —

please let us know how you would like your company listed and what objects are available.

Have it your way...

Customized NEXT Developer’s Camp classes
on-site at your facility.

What could be better than creating a mission critical

custom training program for your application developers?
Ask about our other training programs too—we have been providing
first-class NeXT training to some of NeXT’s largest customers for over a year—
longer than most NeXT service companies have been aware of the NeXT way.

400 W. Erie Suite 301
® Chicago, Il 60610
o 800-394-4487

ems@its.com

NFORMATION
ECHNOLOGY

OLUTIONS

products:
ImageScrollView / MiniView

Digital Composition Systems, Inc.
(415) 673 - 5322
gary @dreyfuss.portal.com
products:
SpreadSheetVue

Digital Tool Works
(617) 742 - 4057
lexcube!equation@bu.edu
products:
Equation

Doberman Systems
(801) 944 - 4329
doberman!mike @esunix.sim.es.com
products:
Simulation Kit

Frontier, Inc.

(800) 448 - 6398
frontinc!john@uunet.uu.net
products:

Clock / Alarm Object
C-Tree Adaptor
DateField
Dials & Gauges
DBKit Companion Objects
Money & Number Field
System Event Timing Object
Time Bomb Object
Time&Billing Timer Object
Validate Text Field

Hot Software
(617) 252 - 0088
info@hot.com
products:
BarCodeKit
SerialPortKit

Impact Software
210 Lake Street
Ithaca, NY 14850
(607) 277-8623
email: impact@impact.shamen.com

Insight Software
(503) 222-2425
info@insight.com
products:

Object-Based Computing / November 1992

ImageView
ScannerKit

Instituto Balseiro
Universidad Nacional de Cuyo
+54 (944) 61013
roverel@cab.edu.ar
products:
SimulationKit

Itasca Systems, Inc.
(612) 851 - 3155
terry @itasca.com
products:
ITASCA NeXTSTEP Client
ITASCA ODBMS

KCW Consulting
(703) 938 - 4152
curt@kcwc.com

products:
PhoneTones

Lamb Software Design
41-22735.96.03
lamb@1lsd.ch
products:
LSDDistMatrix

Liveware Corporation
(303) 484 - 7607
info@liveware.com
products:
LockOut Object Set

Metaresearch, Inc
(503) 238 - 5728
75270.1262@compuserve.com
products:
Color Digital Eye Objects
SoundWorks Objects

Mouthing Flowers.
(206) 325 - 7870
products:
slugg@mouthers.wa.com

Nightshade Software
(403) 492 - 9343
nightshade@niagara.ucs.ualberta.ca
products:
FilteredFields
GraphMe

u
400 WEST ERIE, SUITE 301
CHICAGO, IL 60610

NiftyButton

Objective Technologies, Inc.
Suite 1502
7 Dey Street
New York, NY 10007
(212) 227-6767
info@object.com
ChooserPalette
GraphPalette
MathPalette
OTDBKit
OTTI Extended Text Object
OTI Tabular Text Example Objects
OTString Kit
SmartFieldPalette

RDR, Inc.
Suite 350
10600 Arrowhead Dr.
Fairfax VA 22030
(703) 591-8713
email: info@rdr.com
RDRGadgets
RDRImageView
RDRSelector
RDRSound
RDRSwitchView

Solutions Unlimited
(514) 849 - 3631
darcy @solutions.ca
products:
Floatinglmage
SUMatrix

The Stepstone Corporation
(203) 426 - 1875
hotline@stepstone.com
products:

ICpak 101

Stream Technologies, Inc.
+358 0 4357 7340
info@sti.fi
products:

Object Store

Suite Software
(619) 698 - 7550
Customer_Support@suite.com
products:
EnvVar

Object Catalogue
a monthly update
Objects, palettes, and other tools for
NeXT Developers:

ABComputers
(401) 521 - 2829
products:
ProFuse Rule

Anderson Financial Systems, Inc.
(215) 653 - 0911
kit@afs.com
products:
AFSApplication
AFSButton
AFSEventManager
AFSFindPanel
AFSForm
AFSHelpPanel
AFSLookupsPanel

AFSMatrix
AFSMouseCalcPanel
AFSReportPanel
AFSScanPanel
AFSTextField
AFS3DButton/Graph
AFSWindow,AFSPanel
TradeKit

Archetype, Inc.
(617) 890 - 7544
products:
Document Engine

BenaTong
(614) 276 - 7859
benatong@count(.uucp or
chuck@kiwi.swhs.ohio-state.edu
products:
Serial Solutions

u
400 WEST ERIE, SUITE 301
CHICAGO, IL 60610

Black Diamond Tech.
(312)554 - 5000
products:

Lotus Realtime Object Kit

Black Market Technologies, Inc.

(718) 522 - 5090
info@bmt.gun.com
products:
GridPalette
Multicell

Conextions, Inc.
(508) 689 - 3570
edk@conextions.com
products:
Network Palette

Dept. of Radiology

Ohio State University Hospital

(614) 447 - 9194

Object-Based Computing / November 1992

This application to application commu-
nication channel is provided by the Mesa
Object Library Interface (MOLI), and it
consists of three classes:

e MesaListen,
* MesaObject
e MesaView

The MesaListen class is much like the
AppKit's Speaker/Listener class, it can
subscribe to ("Listen" for) specific con-
ditions in the spreadsheet, and when they
occur a message is sent to the MesaLis-
ten.

One example would be if the prices of
gold were updated in the spreadsheet
from one external application, a second
application running on the gold traders
machine could inform Mesa that it would
like to listen in and be told when the
price of gold in London was 1% higher
than in New York. This is quite efficient
since the custom application will remain
dormant until it is informed of the
change.

These actions are all facilitated through
the built in Mesa function signal().

One would enter into a cell:=signal(zur-
ich_price / 101% > london_price,
"BuyZurich", zurich_price)

Mesa would then send the price of gold
in Zurich when it is 1% greater than the
price in London to the "port" named
BuyZurich.

In our custom application we would sub-
scribe to the BuyZurich "port" when we
initialized a subclass of MesaListen. The
call would look like

goldListener = [[GoldListen alloc]
initToPort:"BuyZurich"],

with GoldListen a subclass of MesaLis-
ten. Our GoldListen object would have
to implement one method -gotMessage:-
num:forUpperRow:upperCol:
Row:lowerCol: that would be called
when the signal was triggered.

lower-

We see that it is easy enough to get a
message from Mesa, but how do we

Object-Based Computing / November 1992

manipulate information inside a work-
sheet?

Well the MesaObject takes care of that,
it is the class that allows connections into
worksheets. Once one connects to a
worksheet most any action that can be
done by a user can be carried out from
within the MesaObject.

There are method calls for doing most
everything from creating new work-
sheets to getting values from a range of
cells to saving a worksheet under a new
name. When a MesaObject is created it
must be linked to a worksheet, thus to
create a new MesaObject and open a
worksheet we write:

sheet = [[MesaObject alloc] initToWork-
sheet:"/files/foo.Mesa"]

Now we can send messages to the work-
sheet through the sheet id. If we wished
to force a re-calculation we would send
[sheet recalc];, if we would like to make
the worksheet the current front window
we would send [sheet makeKeyAn-
dOrderFront];. Likewise we can place
data into and pull data out of any work-
sheet, this creates a simple and extensi-
ble way to create real time data feeds into
MESA worksheets.

The last class that MOLI provides is
MesaView, it creates "views" into work-
sheets. These views can consist of both
ranges of cells, or of created graphs.
Because these views are actually part of
the worksheet they can be edited just as
though the user was editing them in
Mesa itself. They can accept drag and
drop color and fonts just like Mesa itself.

The custom programmer does not have
to worry about where a color tile has
been dropped, MesaView takes care of
all the details. The only thing that the
custom programmer has to do is create a
view into the worksheet with the:

GraphView = [[MesaView alloc] init-
Frame:&re toSheet:tmp toGraph:"Graph
Name"]

Now when the data or graph is changed
in the worksheet, the corresponding

u
400 WEST ERIE, SUITE 301
CHICAGO, IL 60610

Joe Barello Consulting

NeXT
Computer

Software
Design
Training

System
Administration

4043A 23rd Street

San Francisco, CA 94114
415.647.6398
joeba@jbc.com

MesaView will also be updated and the
user will see all changes automatically.
All the work has been done in the Mesa-
View object, imagine having to write one
line of code to create a graph from some
data. MesaView provides this and more,
just like the AppKit all of the work is
done for you, all you have to do is instan-
tiate the various objects and have them
do all of your work.

Through the use of object oriented pro-
gramming with Objective-C we can cre-
ate extensible applications that allow
other programs to communicate in a
seamless and simple manner to each
other. Mesa goes even one step further
allowing additions that appear inside the
program itself, but that is beyond the
scope of this article.

I hope that this has given some insight

into the beauty of object oriented pro-
gramming on the NeXT. With NeXT-
STEP 3.0, NeXT has given us even more
tools to further inter-application commu-
nications. I believe that MOLI is a large
step forward and away from static pro-
grams toward extensible programs that
allow a user to customize the way in
which a commercial application works
to make them more productive.

If you have any questions about Mesa
and MOLI please contact me at:
jaeger@athena.com
or give us a call at
Athena Design, Inc.
(617)-734-6372 O

encourages re-use rather than re-inven-
tion.

Exercises

1) Bring up Interface Builder and
double click the Class Editor window by
double clicking on the “Classes” tool-kit
icon in the lower left window.

Compare this with the Inheritance struc-
ture described above. What happens
when you try to use the “Instantiate”
selection under the pop-up list labeled
“Operations”. Try instantiating an
Object. Why can't you instantiate a
View? Try sub-classing a View and call
it, “MyView”. If you drag a custom View
from the palette and then inspect its
attributes what do you see? Can you
make the custom view an instance of the
MyView class?

2) What are some sample inherit-
ance structures you might create? What
would an inheritance structure for bank-
ing objects such as saving accounts,
checking accounts, and banking transac-
tions look like? What fields would they
have in common? What fields would be
unique? What would an inheritance
structure for electrical components like
wires, resistors, capacitors and transis-
tors look like?

Editor’s note --

We would be very interested in your
positive and/or negative comments
regarding our series on OBC --
please let us know what you think
and what you would like to see in the
future. We stand ready to deliver the
information and suggestions that the
programming community is waiting
for... please let us know what would
help you.

Thank you,
Ted Shelton,
Editor Object-Based Computing
ems@its.com
800 / 394 -4487

Classes in Untitledi X

_ Casses | owect [NCITETIONN

Ohject = | el

List

aaund

FirstResponder
Fonthdanager
HashTahle

Responder

atorage
MyHelloClass

r-\.

MyHelloClass

Figure 6.

Object Oriented Applications:
What does that buy you?

Dirk Fromhein, Athena Design, Inc.

We've been hearing about object oriented
programming for some time now, but
what does it really mean? And most
importantly what does it give you?

Because NeXT uses Objective-C many
of the things that make a program actu-
ally run are done when you start the pro-
gram, not when you compile the
program. This buys a great deal of flexi-
bility that is just not possible with other
languages and other systems. When an
applications developer uses a more tradi-
tional language such as C or C++ to cre-
ate an application the program is
essentially done when the final compile
and link is run and the product is shipped
to a customer. While there are ways to
extend existing programs, by the nature
of these languages it will never be very
clean.

Here Objective-C shines—one can load
additions to the program at run time and
never know whether the feature was part
of the original program or added later.
Because of this the various objects that

u
400 WEST ERIE, SUITE 301
CHICAGO, IL 60610

make up the program can have multiple
connections to other objects. The added
modules act and are called with the same
mechanism that the functions in the
already existing program are. This
behavior is known as run time binding,
one of the most powerful but under used
features of Objective-C.

One application that makes extensive
and correct use of run time binding is
Mesa, a traditional spreadsheet that
makes full use of all of the exclusive fea-
tures that makes a true NeXTSTEP pro-
gram. Every copy of Mesa comes with a
run-time library that allows a custom
program to seamlessly communicate in
an object oriented manner with the inter-
nals of Mesa.

This allows custom programmers to fully
utilize the calculation and graphing
prowess of this spreadsheet from within
a custom application. Custom program-
mers must merely subclass the given
objects to manipulate Mesa and any open
worksheets in much the same manner as
a user actually performing the actions
would be able to.

Object-Based Computing / November 1992

] -
Object Figure 4.
| Bitmap || Font ||FontManager|| PrintInfo || Pasteboard| | Speaker || Listener
ActionCell
| FormCell ||TextFieIdCeII|| ButtonCell || SliderCell |
Responder
Window View
— 1 1 A |
Panel | Box || Text || ScrollView |
| SavePanel || FontPanel || PrintPanel | |ChoosePrinter|| Pagelayout || Menu |
Con$| 1 1 1
| Matrix || TextField || Button || Slider || Scroller |
Inherited from ViewNXRectframe;
NXRect bounds;
id superview;
. . Object i
id subviews;) 1sa
id window;)
struct __vFlags vFlags;
Inherited from Controlint tag; R q R v q
id cell: esponder next Aespon er
struct _conFlags conFlags;
Declared in Button(none)
frame
This shows the direct ancestors of the bounds
Button class. Below that are the View supe'rwew
instance variables for each of these subviews
levels. The Button class hierarchy window
might look something like the follow- vFlags

ing figure.

If you create a button and need to
know the bounds of it, you could
access the bounds of your own button
as the variable “bounds”. The bounds
would actually come from the state
variable of the View class. Informa-
tion, such as bounds, is used over and
over again every time you manipulate
any on-screen objects. Re-using this
productivity and

code increases

tag

Control cell

conFlags

Button (none)

Figure 5. Button Inheritance Hierarchy

u
400 WEST ERIE, SUITE 301

Object-Based Computing / November 1992 CHICAGO, IL 60610

Figure 3.
Mammals
Humans Dolphins
Students Teachers
John Sue Dan Peg Flipper

ber they are as different as a car
(instance) and a car producing factory
(class). This can be difficult for people
unfamiliar ~ with Builder
because both classes and instances are
represented by small windows that are
very close together and look similar.
Both classes and instances of objects can
be changed. Changing the factory that
produces cars could change some aspect
of every car produced by that factory.
But changing one single car would not
have a direct effect on all other cars of its
class.

Interface

We will use some new terminology to
describe the relationship between

classes. In Figure 3, “Humans” are con-
sidered a super-class of “Students” and a
sub-class of “Mammals.”

When a new class is created, all the
instance variables as well as methods
defined in its super-class are inherited. It
in turn inherits all the instances and
methods of all the super-classes above it.
This is one of the principal ways that
programs are reused in object oriented
programming. You find an object in the
inheritance tree that most closely
matches your needs and then make
extensions to it. There are ways to create
new structures as well as change existing
structures.

u
OBJECT-BASED COMPUTING SUBSCRIPTIONS

Annual subscriptions are $28 for a hard copy version. The email version

is free to people who have hard copy subscriptions and request that the

newsletter be sent by email in addition to or instead of the regular version
(you must have NeXTMail access).

Please make your check payable to:
Information Technology Solutions, Inc.
400 W. Erie Suite 301 Chicago, IL 60610

We will also be willing to bill you but please remember that we are a
small company trying to do the right thing and we hope that you will
also do the right thing by paying promptly.

The following info is needed to process your subscription request:
Name, Address, Phone Number, Fax Number, NextMail, Asciimail (if no
Nextmail) and billing information if different from mailing information.

u
400 WEST ERIE, SUITE 301
CHICAGO, IL 60610

Now, take a close look at the inheritance
tree for the NextStep Application Kit.
This is a tool-kit of objects that can be
used to build applications. The structure
for this tree is given in the Figure 4 on the
next page.

Understanding the structure of the appli-
cation kit is necessary to be able to use
the application kit and extend the user
interface objects to meet your needs. At
the top of the structure you see a box
titled “Object”. This is the most generic
object in the tree. It has the fewest spe-
cialized characteristics of any of the
Application Kit objects. Any character-
istic of the object class will be shared
with all other appkit objects. Directly
below the object class is the Responder
class. This consists of all objects that can
respond to user-generated events such as
pressing the mouse and typing on the
keyboard. To the lower right of the
Responder is the View class. All objects
on the screen are a subclass of the View
class. Below the View class is the Con-
trol class. All classes which are sub-
classes of the Control will respond to
events by sending messages directly to
other objects. They can serve as control-
ler inputs to our custom objects.

One example of a control is the Button
class, Figure 5. If you take a closer look
at the Button class you will see that most
of the characteristics of the Button class
are not created in the object itself but
arise from its location in the inheritance
tree. Let’s take a closer look at the docu-
mentation NeXT provides about the But-
ton class. It can be found in the following
path of the NeXT on-line documenta-
tion.

INHERITS FROMControl:

View: Responder: Object
INSTANCE VARIABLES

Inherited from Object Class isa;
Inherited from Responder
id nextResponder;

Object-Based Computing / November 1992

(or occurrence) of the object. The only
way to read or write the values of these
variables is to use one of the access
methods provided with each object. This
is often abbreviated to just “method”
which refers to the way a program
accesses the structures inside an object.

Benefits of Encapsulation

Encapsulating data gives the program-
mer control of the data types that are
passed to the objects. Since the NextStep
Objective-C compiler has type-checking
built into its messaging, it is easy to catch
data type mismatches early in the design
process when they are much easier to
isolate. This dramatically cuts down time
spent with the debugger and greatly
enhances the reliability of the final pro-
grams.

Once the set of messages that an object
can receive is defined, you can then
design the object’s interface. If, at a later
time, you find another more efficient data
structure you would like to use inside the
object, it can be changed internally and
not effect the interface. This means that
you can make updates without affecting
the other components of your system.
After you have an object that performs
some specific function, you can then cre-
ate a symbolic abstraction of that object
using a “view” of it on the screen. The
connections to the object can then be
done with NextStep's connection based
programming tools.

Views of Subroutine Libraries

By creating these views, a user can now
graphically manipulate the object and
integrate it with other objects. When
users make a connection to an object,
NextStep asks them which of the access
methods they would like to use. This
means that non-programmers can start
using tools that were previously only
accessible to a very small group of expe-
rienced programmers. And since it is up
to the creators of the objects to validate
the correctness of the access methods, a
much larger group of people will be able

Object-Based Computing / November 1992

Internal
State
Variables

Figure 2. A suggested mental image of an object.

to use the objects without having to
debug them.

Imagine what the world would be like if
the only people who could drive a car
were the people who could assemble an
internal combustion engine. There cer-
tainly wouldn't be the traffic problems
we have today. Cars have a simplified
user interface: a steering wheel, a brake
and a gas peddle. Object-based comput-
ing platforms give us these same advan-
tages: easy to use interfaces to traditional
subroutine libraries. This helps both the
creators and users of a subroutine library
system. It helps the creators because the
size of their potential user base increases
dramatically; it helps users because the
amount of training they have to go
through decreases dramatically. The
number of people who are creating appli-
cations with these graphic subroutine
libraries will grow exponentially for the
next several years.

Before object-based computing people
had to use a manual to find out all the
arguments to a subroutine, declare all the
arguments with the correct data types,
pass these in the correct order to subrou-
tines and then, if any of them were
wrong, start learning how to use the
debugger. Now you can just point to a
source object, drag a line to a destination
object and click on the message to be

u
400 WEST ERIE, SUITE 301
CHICAGO, IL 60610

sent. Correctness is enforced by the user
interface.

INHERITANCE

Before discussing inheritance, it is pru-
dent to clarify the distinction between an
instance of an object and a class of
objects. The characteristics of a class of
objects, like a Ford Truck, is determined
by the factory which creates the trucks. If
one had a Ford Truck, one would have an
instance of the truck. Similarly, there are
classes of objects which create new
instances of objects. And these are natu-
rally called factory objects.

The second technique used in object ori-
ented programming is Inheritance.
Whenever a new class of objects is cre-
ated, it is always created relative to other
classes of objects. These classes fit
together into a “tree” of object classes.

Sample Inheritance Tree

The structure of an inheritance tree is
very similar to an evolutionary tree (see
Figure 3). The most general class is at the
top, and each class that has a group of
common characteristics would be a
lower class. An important point to note is
that you can create an instance from any
level in the tree. When you think of the
difference between an instance of an
object and the class of an object, remem-

Object-Based Computing: Part 3

Dan McCreary, Integrity Solutions

This is the third of six articles on Object-Ori-
ented programming. If you have missed the
first two we would be happy to send you the
earlier articles. For subscribers this service
is available at no cost. All others must send
$2.50 per issue for shipping and handling.

ENCAPSULATION

AND INHERITANCE

You have just been on a whirl-wind tour
of the steps required to create your first
object. Now, take a step back and look at
the details of object creation more
closely.

The late 1980's saw the migration of pro-
grams traditionally found on large main-
frame systems to personal computer
platforms - word processors, data bases
and spread sheets being the most popu-
lar. As these programs became more
commonplace, new software companies
began entering the personal computer
software market with less expensive and
more powerful versions of the standard
programs. To be competitive, software
had to be feature-rich and still run on
systems with severe memory limitations.
As a result, the marketing divisions of
software firms started to promise new
versions of products with a large number
of new features but which would still run
on computer systems with very little
memory. Software developers found
they couldn't deliver the programs on
time. The software had so many features
it was called “bigware” and it took so
long to develop that it became known as

“lateware”!.

What software developers were finding
was that as they tried to add new features
they would introduce new bugs. And try-
ing to fix those bugs introduced addi-
tional bugs. The result was a drastic
decline in software productivity propor-

1. Newsweek, April, 1989.

A

Productivity

Figure 1.

New Features Added

>

tional to the size of the project (see Fig-
ure 1).

To solve this problem, the ways in which
programs are created and integrated
together to create a software system must
be examined —and not just at the super-
ficial level of software productivity tools,
but rather at the very foundation of soft-
ware creation.

Researchers have been studying soft-
ware design techniques for many years.
Much of the pioneering research in new
programming environments at the Xerox
Palo Alto Research Center has shown
that there are radically different
approaches to creating software that
challenge traditional programming
methods. One family of techniques that
gained a great deal of popularity in the
mid-eighties is currently referred to as,
“the principals of object oriented pro-
gramming.” These techniques will be
introduced to you in this and later chap-
ters. The first technique, known as,
“encapsulation” covers the creation of
new objects.

ENCAPSULATION

Encapsulation goes by various names.
Computer scientists often refer to it as
“information hiding” or “data abstrac-
tion.” In general, these terms imply

u
400 WEST ERIE, SUITE 301
CHICAGO, IL 60610

grouping data and the procedures to
access that data together in the same unit.
This unit is called an “object.” Here are
some rules about how you can access the
data in an object. One rule is that if you
develop an object, you only let people
see or change your internal data using the
procedures provided with that object.
This means the creator of the object has
ultimate control over how users access
this object and change its internal states.
The creator of an object is responsible
for creating and testing methods a user
will need to read the state of an object as
well as checking the validity of inputs
used to change the state of an object. The
creator of an object (rather than the user
of an object) is responsible for the com-
pleteness and correctness of all access
methods.

To create a mental image of the objects,
it might be helpful to imagine a box with
a thick brick wall around it, as in Figure
2 on the following page.

Inside the box are the object’s data struc-
tures: integers, floating point numbers,
strings, and other more complicated
structures such as linked lists or directed
graphs. These are the “instance vari-
ables”. They hold the state of the object.
The word, “instance” is used because
there is a different group of these vari-
ables associated with each instantiation

Object-Based Computing / November 1992

Published monthly by

INFORMATION TECHNOLOGY SOLUTIONS INC.

A forum for developments in obejct-based comput-

ect-

OMPUTIN

editorsDesk
Our Third Issue!

Despite all efforts, we have not yet
printed an issue on schedule. We will
continue to iterate toward one issue per
month. Please bear with us as we learn to
produce a regular newsletter, while also
providing clients with NeXT systems
administration, training and program-
ming services.

Rest assured, your “annual” subscription
is being treated as a “12 issue” subscrip-
tion (not one calendar year).

Since a goal of this newsletter is to give
you a picture of what’s developing in the
object-based community, the onus is on
us to stay up-to-date and print informa-
tion you aren’t getting any place else.
The newsletter focus is technical, for
object oriented computing specialists.
Please let us know what information will
be of the most value to you.

We feel articles that present or explain a
product are valuable. In this issue, Dirk
Fromhein of Athena Design has done a
wonderful job of opening the door onto
their product, Mesa. Although Mesa
looks on the outside like a standard
spreadsheet application, under the hood
it is a powerful object-oriented program
which can be integrated into custom
applications. Dirk explains some of the
ways that a programmer can gain access
to Mesa’s features through the Mesa API
called MOLI.

With this kind of program, object ori-
ented design wins... 500% over all other
programming paradigms currently avail-
able to computer buyers. The ability to
tightly link programs together—both
commercial applications from multiple
vendors; and commercial and custom
applications—is the feature of object-
oriented design and programming that
has the strongest impact on how we
work. I hope all commercial software
developers, both NeXT specific and oth-
erwise, take note of Athena’s product
design.

Someday even the advanced features in
the NeXT interface such as “Services”
and object-linking will seem trivial next
to the multi-vendor integration that our
software packages will naturally be
capable of.

Until then I will continue cutting and
pasting between applications and trying
to point the way toward the future utopic
computing environment by trying to get
all of the power possible out of my NeXT
(in order to get this newsletter out on
time...).

Yours,

Ted Shelton, Editor
Object-Based Computing
ems@its.com

u
400 WEST ERIE, SUITE 301
CHICAGO, IL 60610

ing in the NeXT community.

NOVEMBER, 1992
ISSUE #3

Volume 1, Number 3, November 1992

Submissions Encouraged!

Thank you for letting us know what kind
of articles you'd like to read. We are
also looking for articles to print... so
please consider sharing some of your
experiences with the NeXT community.

thislssue

A little about the articles in this issue.

The third in a series of six articles on
object-oriented computing appears in
this issue. Written by Dan McCreary of
Integrity Solutions, Inc., this is a glimpse
at his new book on Object-Based Com-
puting with a focus on the NeXT.

From Dirk Fromhein, Athena Design,
Inc., we have an article on object-ori-
ented programming with a specific dis-
cussion of Athena’s Mesa spreadsheet
and how it can be used by programmers.

contents

editorsDesk 1
thisIssue 1
objectCatalog 8

features

Object-Based Computing:
Part 3 2

Object-Oriented Applications:
What does that buy you?.......... 6

