
Object-Based Computionmg / August 1993 8
INFORMATION TECHNOLOGY SOLUTIONS, INC
400 WEST ERIE, SUITE 301, CHICAGO, IL 60610

Object-Based Computing is published often by
Information Technology Solutions, Inc.

400 West Erie, Suite 301
Chicago, IL 60610

FIRST CLASS

Object - Based Object - Based
Computing Computing

PagerKit and
PagerNX
Chicago based Information Technology
Solutions has announced the availability
of PagerKit and PagerNX for NEXT-
STEP.

Providing a complete solution to alpha-
numeric and numeric paging, the Pager-
Kit gives the NEXTSTEP programmer
both a command line and object kit
access to a fully featured pager engine,
pager definition methods, and person
record.

In addition, a full NEXTSTEP applica-
tion for sending pager messages is
included.

The total price for the combined Pager-
Kit and PagerNX.app is $249. The
PagerNX application is available sepa-
rately for $149.

Michael Manning, ITS programmer
responsible for the PagerKit says, “I
wanted to have a robust set of tools for
connecting to an on-line service and
exchanging simple types of messages.”.

Michael notes that the “chatman” mod-
ule used to set up conversations with
Pager companies’ on-line systems can be
adapted to many other purposes.

“For one project”, added Michael, “we
used ‘chatman’ to connect to a GEISCO
mailbox and retrieve simple email mes-
sages into an automated message router
we had built using NEXTSTEP.”

Michael Manning can be reached at
mmanning@its.com

Please write or call for further informa-
tion.

WorldClock from ITS

Just $45
...and you’ve got all
the time in the world...
800 394-4487

Object-Based Computionmg / August 1993 7
INFORMATION TECHNOLOGY SOLUTIONS, INC
400 WEST ERIE, SUITE 301, CHICAGO, IL 60610

Object - BasedObject - Based
ComputingComputing

Information Technology
Solutions
400 West Erie, Suite 301
Chicago, IL 60610
(312) 587-2000
info@its.com
PagerKit • StringSurgeon •
Yahv.app (Header Viewer)

Insight Software
(503) 222-2425
info@insight.com
ImageView • ScannerKit

Itasca Systems, Inc.
(612) 851-3155
info@itasca.com
ITASCA NEXTSTEP Client •
ITASCA ODBMS

Joe Barello Consulting,
Inc.
(212) 580-8366
(212) 580-1857 FAX
info@jbc.com
Tab Palette

Kapiti Limited
(071) 587-0033
(071) 735-3765 FAX
FIST: Complete Dealing
Room System

KCW Consulting
(703) 938-4152
curt@kcwc.com
PhoneTones

Lamb Software Design
41-22 735.96.03
lamb@lsd.ch
LSDDistMatrix

Liveware Corporation
(303) 484-7607
info@liveware.com
LockOut Object Set

Look Glass Design, Inc.
(604) 739-3131
(604) 739-3008 FAX

LDGCreditCardAuthorization •
LGDModem • LDGSerialPort

Metaresearch, Inc
(503) 238-5728
(503) 232-6323 FAX
info@metaresearch.com

Color Digital Eye Objects •
SoundWorks Objects

Mouthing Flowers.
(206) 325-7870

slugg@mouthers.wa.com

Nightshade Software
(403) 492-9343
nightshade@niagara.ucs.ualb
erta.ca

FilteredFields • GraphMe •
NiftyButton

Objective Technologies,
Inc.
Suite 1502
7 Dey Street
New York, NY10007
(800) 3-OBJECT
(212) 227-6767
(212) 227-3567 FAX
info@object.com

ChooserPalette •
GraphPalette • MathPalette •
OTDBKit • OTI Extended Text
Object • OTI Tabular Text
Example Objects • OTString
Kit • SmartFieldPalette

RDR, Inc.
Suite 350
10600 Arrowhead Dr.
Fairfax VA 22030
(703) 591-8713
(703) 273-8170 FAX
info@rdr.com

RDRGadgets •
RDRImageView •
RDRSelector • RDRSound •
RDRSwitchView

The Stepstone
Corporation
(203) 426-1875
hotline@stepstone.com
ICpak 101

Stream Technologies,
Inc.
+358 0 4357 7340
info@sti.fi
Object Store

Target Development
(800) 444-5435
(717) 898-9190
objects@target.com
Link View Palette• Retriever
Palette

Trillium Sound
Research, Inc.
(800) L-ORATOR
(403) 284-9278
manzara@cpsc.ucalgary.ca
Text-to-Speech Kit

Uptime Object Factory,
Inc.
(+41) 55 12 42 29
(+41) 1 932 4923 FAX
info@uptime.ch
FilterKit • Generic Search
Facility for DBKit • Nikita:
Advanced NetInfo Kit

Versant Object
Technology
(415) 329-7542
geoff@osc.com
Versant ODBMS

VNPSoftware
(617) 661-4292
(617) 864-6768 FAX
info@vnp.com
AccessKit • UIBinder Palette

Workstation AG
+41 91 505094
rgi@wag.chation
DBDragger • FuncEdit • Knob

ZGDV Darmstadt

+49 06151 293863
essmann@igd.fhg.de

Realtime Voice and Video
Communication

ZippyTech

(412) 421-9588
ztech@well.sf.ca.us
PO Box 322
Homestead PA 15120

InetObjects Base Collection &
Protocol Collection

We would be happy to list
your company -- please let us
know how to list your com-
pany and what objects are
available from your company.
Filling out the object submis-
sion form on the next page
will also help us to provide a
complete list of resources for
the object based NeXT devel-
oper.

In future issues an important
part of this publication will
be a descriptive list of tools
and objects that are available
to NeXT programmers. We
will be trying to review two
or three objects or program-
ming tools each month. If you
would like to have your
object or tool reviewed send a
copy, with all associated liter-
ature and documentation to:

Ted Shelton, Editor
Object-Based Computing
c/o I T Solutions
400 West Erie, Suite 301
Chicago, IL 60610

We apologize in advance that
submissions for review can-
not be returned.

6 Object-Based Computionmg / August 1993

Object - BasedObject - Based
ComputingComputing

INFORMATION TECHNOLOGY SOLUTIONS, INC
400 WEST ERIE, SUITE 301, CHICAGO, IL 60610

Object Catalog
ObjectWare for NEXTSTEP

InetObjects
from Zippytech

Pittsburgh based Zippytech began ship-
ping the InetObjects Base Collection
version 1.0 in July of this year. InetOb-
jects is a collection of TCP/IP network-
ing objects for NEXTSTEP. The object
kit is available for both NeXT machines
and Intel machines running NEXTSTEP.

According to S. D. Cooper, head of Zip-
pytech, “This object collection is the
only one that provides seamless integra-
tion of TCP/IP networking and the
NEXTSTEP Appkit. It is now much eas-
ier for programmers to construct net-

work applications in a heterogenous
TCP/IP environment.”

The InetObjects Base Collection pro-
vides classes for TCP/IP and UDP/IP
sessions, header files, online documenta-
tion, and source code for a NEXTSTEP
application that uses the InetObjects
object collection.

Zippytech programmers reported that it
was more painful to install NEXTSTEP
on their Intel box than it was to port Ine-
tObjects for it.

The InetObjects Base Collection sells for
$100 with substantial student discounts.
Cooper: “Our pricing is structured so
that developers can try the objects with

minimal up-front costs. Our educational
discounts also make the InetObjects
Base Collection ideal for students want-
ing to learn network programming.”

Zippytech is a privately held company
that develops objectware for heteroge-
nous network environments.

For more information, contact

Zippytech (ztech@well.sf.ca.us).
PO Box 322
Homestead PA 15120
412-421-9588

Objects, palettes, and other
tools for NeXT Developers:

ABComputers

(401) 521-2829
(401) 521-2829 FAX
rca@cs.brown.edu

ProFuse Rule

Anderson Financial
Systems, Inc.

(800) 237-8723
(215) 653-0911
(215) 653-0711 FAX
kits@afs.com

AFSApplication • AFSButton •
AFSEventManager •
AFSFindPanel • AFSForm •
AFSHelpPanel •
AFSLookupsPanel •
AFSMatrix •
AFSMouseCalcPanel •
AFSReportPanel •
AFSScanPanel •
AFSTextField • AFS3DButton/
Graph •
AFSWindow,AFSPanel •
TradeKit

Archetype, Inc.
(617) 890-7544
(617) 890-3661 FAX
info@architype.prospect.com
Document Engine

BenaTong
(614) 276-7859
(614) 276-7859 FAX
benatong@count0.uucp or
chuck@kiwi.swhs.ohio-
state.edu
Serial Solutions

Black Market
Technologies, Inc.
(718) 522-5090
(718) 522-5090 FAX
info@bmt.gun.com
GridPalette • Multicell

Conextions, Inc.
(508) 689-3570
(508) 689-2450 FAX
info@conextions.com
3270Builder • 3270Palette •
3270Toolkit • 5250Palette •
5250Toolkit

Dept. of Radiology
Ohio State University
Hospital
(614) 447-9194
mitroo@magnus.acs.ohio-
state.edu
ImageScrollView/MiniView

Digital Composition
Systems, Inc.
(415) 673-5322
gary@dreyfuss.portal.com
SpreadSheetVue

Digital Tool Works
(617) 742-4057
lexcube!equation@bu.edu
Equation

Doberman Systems
(801) 944-4329
doberman!mike@esunix.sim.e
s.com
Simulation Kit

Elysia, Inc.
(+33) 1 47 49 61 96
(+33) 1 47 14 99 09 FAX
info@elysia.fdn.org
ImageView Palette • ScanKit

Eye Research Institute
(416) 369-6478
(416) 369-526 FAX
info@eric.on.ca

Calera Network OCR Toolkit

Harvard Toolworks, Inc.
(508) 772-4420
(508) 772-4603 FAX
info@magdalen.dmc.com

DBCalendar & DBText
Adaptor

Hot Software
(617) 252-0088
(616) 876-8901 FAX
info@hot.com

BarCodeKit • SerialPortKit

Hutchison Ave. Software
Corp.
(514) 499-2067
(514) 845-5236 FAX
darcy@solutions.ca

NewsKit • QuoteKit

Object-Based Computionmg / August 1993 5
INFORMATION TECHNOLOGY SOLUTIONS, INC
400 WEST ERIE, SUITE 301, CHICAGO, IL 60610

{

 return [self only];

}

 // INSTANCE METHODS

- init // Only initialize self if
the single instance isn't set.
This ensures that the object is
only initialized once.

{

 if
(!theOnlySolitaryObjectInstance
) {

 [super init];

 theOnlySolitaryObjectInstance =
self;

 }

 return
theOnlySolitaryObjectInstance;

}

@end

This class will never have more than a
single instance. Because objects loaded
from a ".nib" file are allocated via the
class method +allocFromZone:, it can
even be safely instantiated in a number
of separate ".nib" files with the assurance
that they will all be the SAME instance.
In the Inspector panel example described
earlier, each of the separate ".nib" files
for each type of window might have an
icon corresponding to a solitary Inspec-
torController instance which could be
used to invoke the Inspector Panel just as
FontManager can be used in invoke an
applications Font Panel.

In cases where it is appropriate, simply
replacing the static declaration for the
single instance variable with a global
could provide a global similar to
NXApp. Alternately, we can extend this
concept to provide a root class for soli-
tary objects. The incorporation of a hash
table as shown below will yield a class
from which subclasses will also always
be solitary.

@implementation SolitaryRoot //
class with solitary descendants
Hash table used to store
instances of this class and all
its subclasses. Every subclass
of this class will be
constrained to have only a
single instance.

static id instanceTable; // Use
class initialization to create

hash table, which is essentially
a private class variable.

{

 [super initialize];

 instanceTable = [[HashTable alloc]
initKeyDesc:"@" valueDesc:"@"];

 return self;

}

 // CLASS METHODS

+ allocFromZone:(NXZone*)aZone //
Always check the hash table to
see if an entry already exists
for this class. We use the class
id as a search key into the
table.

{

id tInstance;

 if (tInstance = [instanceTable
valueForKey:self])

 return tInstance;

 else

 return [super
allocFromZone:aZone];

}

+ only // Find or create the single
instance which is associated
with this class.

{

id tInstance;

 if (tInstance = [instanceTable
valueForKey:self])

 return tInstance;

 else

 return [[self alloc] init];

}

+ new // Alternate method name for
above.

{

 return [self only];

}

 // INSTANCE METHODS

- init // Initialize and insert the
a new instance into the table if
it is not already there. (Be
wary if subclasses are to use a
different designated
initializer.)

{

id tInstance;

 if ((tInstance = [instanceTable
valueForKey:self]) == NULL) {

 [super init];

 [instanceTable insertKey:[self
class] value:self];

 tInstance = self;

 }

 return tInstance;

}

@end

This technique provides a convenient
and reliable method for creating solitary
classes. It also aids in reducing confu-
sion by making it easy to identify soli-
tary classes within a class hierarchy,
since they can always be subclasses of
SolitaryRoot.

The methods described above for creat-
ing and managing single instance object
classes are simple, powerful, and surpris-
ingly counter-intuitive. Using solitary
objects, you can avoid unnecessary
pointers, facilitate communication
between objects within your application,
and model application-wide data and
processes more naturally. You can use
them in Interface Builder to make con-
nections which would otherwise be
impossible. Although some might object
to these single instance classes because
they blur the distinction between classes
and instances, they can greatly simplify a
design, making the code more readable
and easier to maintain, and that, after all,
is the basic goal of all object-oriented
techniques.

Joe Barello Consulting
NeXT

Computer
Software

Design
Training
System

Administration

4043A 23rd Street
San Francisco, CA 94114
415.647.6398
joeba@jbc.com

OBJECT-BASED COMPUTING SUBSCRIPTIONS

12-Issue subscriptions are $28 for a hard copy version. The email version is free to people who have hard copy subscriptions and
request that the newsletter be sent by email in addition to or instead of the regular version (you must have NeXTMail access). If you
want to pay by check or money order (preferable) just send the necessary information payable to:

Information Technology Solutions, Inc.
400 W. Erie Suite 301

Chicago, IL 60610

We will also be willing to bill you but please remember that we are a small company trying to do the right thing and we hope that
you will do the right thing also and pay promptly. The following info is needed to process your subscription request: Name, Address,
Phone Number, Fax Number, NextMail, Asciimail (if no NeXTMail) and billing information if different from mailing information.

4 Object-Based Computionmg / August 1993
INFORMATION TECHNOLOGY SOLUTIONS, INC
400 WEST ERIE, SUITE 301, CHICAGO, IL 60610

which are naturally global in scope. A
typical application, for instance, might
have a number of open windows contain-
ing different types of information but
only a single inspector panel which
would display information in response to
actions in any windows. Rather than
using many outlets to one object or
employing a global variable, an object
class which by its very nature allows
only a single instance of itself is a sim-
pler and more robust solution. I call such
classes solitary objects.

The AppKit contains a number of soli-
tary object classes including OpenPanel,
SavePanel, and FontManager. Imagine
how frustrating and confusing it would
be to have to provide a separate outlet to
the FontManager for every object which
needed to alter fonts. Imagine how
annoying it would be if the icon for the
FontManager presented in Interface
Builder appeared in only one ".nib" file

per application. (Remember that its not
possible to connect objects in different
".nib" files using Interface Builder
except through File's Owner.) Although
the AppKit provides an excellent frame-
work for connecting multiple object
instances via the outlet and target/action
constructs, it doesn't provide a conve-
nient mechanism for handling events and
data which are application-wide in
nature.

Many programmers resort to techniques
such as including a larger number of con-
troller-type outlets in the Files owner
class for each of their ".nib" sections, or
routing all application-wide commands
through an all-knowing, overseeing con-
troller class, or even resorting to sub-
classing the Application object. Through
the use of class methods, solitary object
classes provide a more robust and read-
able alternative.

Solitary objects like the AppKit's Font
Manager class are quite easy to create.
Consider the implementation below.

@implementation SolitaryObject //
class with single instance

// This static variable will hold
the single instance of this
class. (Set by -init method.)

static id
theOnlySolitaryObjectInstance =
NULL;

// CLASS METHODS

+ allocFromZone:(NXZone*)aZone //
Skip allocation if an instance
already exists (even -
loadNibSection::: will be
fooled by this)

{

 if (theOnlySolitaryObjectInstance)

 return
theOnlySolitaryObjectInstance;

 else

 return [super
allocFromZone:aZone];

}

+ only // Both +only or +new may be
used to access the single
instance. I prefer +only.

{

 if (theOnlySolitaryObjectInstance)

 return
theOnlySolitaryObjectInstance;

 else

 return [[self alloc] init];

}

+ new // Alias for +only

$28
for
12

issues
info@its.com

Information Technology Solutions, Inc.
400 West Erie, Suite 301

Chicago, IL 60610
(312) 587-2000

SUBSCRIBE!
To: Object-Based Computing

Object-Based Computionmg / August 1993 3
INFORMATION TECHNOLOGY SOLUTIONS, INC
400 WEST ERIE, SUITE 301, CHICAGO, IL 60610

simplest form, this method reads like
this:

- become:(Class)newClass

{

id newObject;

 newObject = [[newClass alloc]
init];

 [self free];

 return newObject;

}

and it would be used like this:

 id myObject = [[myClass alloc]
init];

 // Some intervening code

 myObject = [myObject
become:otherClass]; // myObject
gets replaced.

The version of this method that I use
more often does not simply replace an
object with another object, but will copy
as much of the original as possible into
the new object. The way I decide how
much to copy, is to look at the inherit-
ance of the original and the new classes,
and note where they diverge.

- become:(Class)newClass

{

id newObject;

int index = 0;

List *mySuperClasses,
*newSuperClasses;

Class myClass = [self class];

Class commonAncestorClass;

 if (newClass == myClass) // NoOp if
these match.

 return self;

 newObject = [[newClass alloc]
init]; // Make the new Object

 mySuperClasses = [self
superClasses]; // Get the
superclasses of each

 newSuperClasses = [newObject
superClasses]; // class.

 for (index = 0; [mySuperClasses
objectAt:index] ==
[newSuperClasses
objectAt:index]; index++)

 {

 commonAncestorClass =
[mySuperClasses
objectAt:index];

 }

 memcpy (self, newObject,
sizeof(commonAncestorClass-
>instance_size);

 newObject->isa = newClass;

 [mySuperClasses free]; // Tidy up?

 [newSuperClasses free];

 [self free];

 return newObject;

}

This is a bit more elaborate. First I create
the new Object, and then, using the -
superClasses method described above, I
get lists of the ancestors of each object.
The for loop steps through the lists until
they diverge, and then the call to mem-
cpy copies that much of the memory of
the original object into the new object.
The statement: newObject->isa = new-

Class; fixes the one thing that we didn't
want memcpy() to change.

If we consider the case of changing one
view subclass into another view sub-
class, then we can see that it will usually
make sense to copy the View instance
variables into the new Object. This is
similar to what happens when a Custom-
View is loaded from a .nib file. The Cus-
tomView object resides in the file, and
when it is copied out of the nib, it creates
an instance of the View subclass which it
supposed to represent, copies its own
instance variables (sizing information,
etc.) into the new View, adds the new
View to the view hierarchy in its window,
and then destroys (frees) itself.

 I hope you have found the techniques in
this article interesting and useful.

A number of helpful programming tech-
niques and objects are available from
ITS for a nominal fee. Send email to
info@its.com for more information.

Solitary Objects
James Herre

In our current age of structured, modular,
and object-oriented programming, out-
moded concepts like global variables are
usually banished altogether, yet there is
often a need for both data and functions

&
IT Solutions Developers =

NEXTSTEP Development White

Black

NFORMATION

OLUTIONS
ECHNOLOGY

I
T
S

Information Technology Solutions, Inc.
400 West Erie, Suite 301
Chicago, IL 60610
(312) 587 -2000 FAX: 312.587.2012

NeXTMail: info@its.com

We know

NEXTSTEP

on INTEL

2 Object-Based Computionmg / August 1993
INFORMATION TECHNOLOGY SOLUTIONS, INC
400 WEST ERIE, SUITE 301, CHICAGO, IL 60610

Adding Methods
to Object
John Randolph, Dolphin
Technologies, Inc.

When I began writing software using
Objective-C, one of the features which
most impressed me was the ability to add
methods to an existing class, by writing a
category of that class. This article
describes several methods I have added
to the root class, Object. Some of these
methods are useful in debugging, and
others are of general interest in under-
standing the workings of the Objective-C
runtime system.

These methods are collected in a cate-
gory called (ITSObjectExtensions). The
first method is -inheritance which reports
the names of all the classes from which
the receiver inherits. For example, when
self is a View, the following statement:

NXAtom tempString = [self
inheritance];

results in tempString containing: "View:-
Responder:Object"

- (NXAtom) inheritance

{

char *workString;

 if ([self class] == [Object class])

 return NXUniqueString([[self
class] name]);

 workString = alloca(MAXPATHLEN);

 sprintf(workString,"%s:%s",[[self
class] name], (char *)[[self
superclass] inheritance]);

 return NXUniqueString(workString);

}

There is one pitfall which I hit when
writing this method. Originally the next
to the last line read:

 sprintf(workString,"%s:%s",[[self
class] name], (char *)[super
inheritance]);

This caused the compiler to complain,
since this method was being added to
Object, and Object has no super! Object
does, however, have a method which

returns the receiver's superclass. The call
to [self superclass] looks like it would
still be a problem at run time, but when
the receiver of the method is Object, exe-
cution will never reach that line anyway.

The next method, -superClasses, is a
good example of recursion through the
class hierarchy. This method gets the
superclasses of the receiver, and then
appends the class of the receiver, unless
the receiver of the message is Object.
This propagates up the hierarchy until it
reaches Object, at which point this
method creates a List, and adds the class,
Object to that list.

- (List *) superClasses // To
iterate is human, to recurse,
divine!

{

 if ([self class] == [Object class])

 return [[[list alloc] init]
addObject:[self class]];

 return [[[self superclass]
superClasses] addObject:[self
class]];

}

The method, -subclasses returns a list of
all of the classes which are direct sub-
classes of the receiver class. This method
is more elaborate since it involves step-
ping through the Objective-C runtime
system's hashtable of all of the classes.

- (List *) subclasses

{

NXHashTable *classTable;

NXHashState hashState;

Class myClass, thisClass;

id subclassList = [[List alloc]
init];

 myClass = [self class];

 classTable = objc_getClasses();

 //First, get ALL the classes.

 for (hashState =
NXInitHashState(classTable);
NXNextHashState(classTable,&has
hState,(void **)&thisClass);)

 if ([thisClass superclass] ==
myClass)

 [subclassList
addObjectIfAbsent:thisClass];

 if ([subclassList count])

 return subclassList; // Return the
list if there are any subclasses

 [subclassList free]; // Otherwise,
Kill the list, and return nil.

 return (List *) Nil;

}

What the runtime system gives us is a
hashtable, which we can step through
using NeXT's hashtable functions. The
for loop initializes a hashstate for the
classTable, and iterates through the table
with NXNextHashState(), putting each
class in the table into thisClass.

Since thisClass is a class object, we can
send it a superclass message, and com-
pare the result to myClass. If we wanted
this method to result in a list of all of the
subclasses of the receiver, then we could
replace the test ([thisClass superclass]
== myClass) in the body of the loop with
([thisClass isKindOf:myClass]).

The logic of the method, -hasSub-
Classes, is similar to that of -subclasses,
but it only steps through the class list
until any match is found.

- (BOOL) hasSubclasses // Like the
loop above, but quits when any
subclass is found.

{

BOOL foundSubclass = NO;

NXHashState hashState;

NXHashTable *classTable =
objc_getClasses();

Class thisClass,myClass = [self
class];

 for (hashState =
NXInitHashState(classTable);
NXNextHashState(classTable,&has
hState,(void **)&thisClass);)

 if ([thisClass superclass] ==
myClass)

 {

 foundSubclass = YES;

 break;

 }

 return foundSubclass;

}

The final method in this article, illus-
trates a technique which I've used on
many occasions. This technique involves
having an object of one class act as a
stand-in for another object, replacing
itself when called upon to do so. In its

VOLUME 1, NUMBER 4, AUGUST 1993

Published often by
INFORMATION TECHNOLOGY SOLUTIONS INC.

A forum for developments in object-based
computing in the NeXT community.

AUGUST, 1993
ISSUE #4

Submissions Encouraged!
Thank you for letting us know what kind
of articles you’d like to read. We are also
looking for articles to print... so please
consider sharing some of your experi-
ences with the NeXT community.

Object - BasedObject - Based
ComputingComputing

INFORMATION TECHNOLOGY SOLUTIONS, INC
400 WEST ERIE, SUITE 301, CHICAGO, IL 60610

editorsDesk
One Year Anniversary

It is both a pleasure and an embarrass-
ment to be celebrating our first anniver-
sary this month. A pleasure because I am
happy to have been delivering this publi-
cation to our readers for the past year and
an embarrassment to be publishing only
our fourth issue in that year.

We have entirely given up the idea of
publishing OBC on a monthly basis, at
least for right now. As you will see on the
subscription form we now refer to sub-
scriptions as “12 issues” rather than
“Annual.”

We will continue to publish as frequently
as time and material permits and I hope
to work back toward a 12 issue per year
schedule. In the meantime we will focus
on providing valuable, high quality
information to you - NEXTSTEP pro-
grammers worldwide.

Ah, NEXTSTEP not NeXT... It’s begin-
ning to trip off the fingertips as I type (as
long as I can remember to capitalize the
“e”). Many changes have occurred since
our last issue, not the least of which has
been NeXT’s decision to stop manufac-
turing their famous black hardware.

While many of us, I’m sure, were sad to
see the NeXTstations disappear, most of
us agree that NEXTSTEP now has a
much better chance to become a market
force in desktop operating systems.

The decision faced by a corporation to
purchase a $700 software license vs. a
$7,000 piece of hardware should push
many companies the rest of the way into
NEXTSTEP.

Already we have seen many companies
that considered the NeXT computer to be
too risky for their IS department take a
serious interest in NEXTSTEP on Intel.
Add that to the “Object Enterprise” alli-
ance between NeXT and Hewlett Pack-
ard and NeXT may actually deliver on
their 1993 NeXTWORLD slogan -- “The
alternative to the Microsoft Monopoly”

At this year’s Object World, however,
NeXT had not yet proven itself to the
marketplace. Despite good attendance at
both my speech to attendees on Real-
World applications of NEXTSTEP and
Brett Bachman’s (VP Product Market-
ing, NeXT) similar speech, NeXT
received very little attention from the
industry.

While having their own booth on the
show floor helped, no one in the Hewlett
Packard booth knew anything about a
NeXT-HP alliance. So much for the first
round. Clearly a lot of work is still to be
done if NEXTSTEP is going to succeed.

Yours,

Ted Shelton, Editor
Object-Based Computing
ems@its.com

thisIssue
A little about the articles in
this issue.

Dan McCreary is rewriting many of the
sections of his book on Object Oriented
programming to reflect 3.0 NEXTSTEP.
Thus the fourth section of Dan’s continu-
ing series will not be appearing in this
issue.

Other articles in this issue include an
overview of PagerNX, a complete pag-
ing kit for NEXTSTEP; a description of
a new TCP/IP networking object from
ZippyTech, and two articles on pro-
gramming in Objective-C. Enjoy!

contents

editorsDesk . 1
thisIssue. 1
objectCatalog 6

features

Adding Methods to Object 2
Solitary Objects. 3
InetObjects from ZippyTech 6
PagerNX from IT Solutions 8

