
Object-Based Computing / December 1993 14
INFORMATION TECHNOLOGY SOLUTIONS, INC

500 WEST MADISON, SUITE 2210, CHICAGO, IL 60661

Object-Based Computing is published often by

Information Technology Solutions, Inc.
FIRST CLASS

Object - Based Object - Based
Computing Computing

THE OBJECTWARE PROFESSIONALS NETWORK
Eric Wespestad, Chicago
Information Technology Solutions

OPN was founded shortly before NeXT-
WORLD Expo 1993 under the name of
Open Protocols for NeXTSTEP - but
later changed its name, as it’s focus
expanded, to reflect the many facets of
the ObjectWare equation. Since that time
individuals from about 80 organizations
have participated in discussions like the
following:

• brokering of objects (finding them),

• documenting objects (figuring out
how to use commercial objects),

• licensing objects (how to distribute
and pay for third-party objects),

• normalization of protocols by which
objects interroperate (assembling
applications from the parts of other
applications),

• quality (trusting objects you didn’t
create, standards for testing), and
• storage of objects (persistency and
archiving)

OPN maintains an archive of its mailing
list that is available via ftp for those
interested in the topics mentioned above.

“OPN's mission is to evangelize
component software which can be
woven by users into customized
solutions. OPN will provide the tech-
nical and political infrastructure for a
vibrant component software mar-
ket.”—Marcos Javier Polanco

“NeXT has for years offered the best
technical foundation for this new
age, but it did not come about. Why
not? Selling kits to developers will
not cause a paradigm shift in the
industry. Selling components to
users will, and that means asking
them "what will it take" for them to
prefer components to Lotus Smart-
Suite.”—Marcos Javier Polanco

Robust interobject communication is a
necessary precondition for component
software. Among other methods to
accomplish this end, NEXTSTEP is
graced with Portable Distributed Objects,
a nearly transparent method of interappli-
cation messaging, even across heteroge-
neous networks.

Component software also needs stan-
dard object programming interfaces to be
exported by the various components.
OPN is serving as a forum where the
NEXTSTEP community can discuss and
agree on what these standards must be.
Once users obtain these various objects
they will want to weave them together into
customized applications, using either the
Objective-C++ compiler or systemwide
scripting languages. !

See the related article “A Scenario for the
ObjectWare Marketplace“ on page 5 .

Object-Based Computing / December 1993 13
INFORMATION TECHNOLOGY SOLUTIONS, INC

500 WEST MADISON, SUITE 2210, CHICAGO, IL 60661

these in the future. In any case, be sure to
BACKUP THE ORIGINAL MAKE-
FILES FIRST!

You might also consider modifying the
basic ProjectBuilder templates (located
inside of its ".app" folder) in order to
have your libraries (say, "libSuperDuper-
Kit.a") as a default library (much like
"libSys_s.a" and "libNeXT_s.a") for
every new project that you start. Once
again, the warning is to BACKUP THE
ORIGINAL FILES FIRST!

Some other issues which I haven't
addressed here (but may in a future arti-
cle) include such things as: Kit/Library
documentation; an automatic kit/library
makefile generator; and, a kit/library
hierarchy viewer

In order to best facilitate the code re-use
that we advocate and that should be gen-
erally encouraged, comprehensive docu-
mentation is a requirement. Program-
mers must be able to look at, not only, the
header files, but also, fully written class
description files (such as those provided
by NeXT for its classes). While access to
the source code is okay, this should gen-
erally be discouraged, since one of the
basic tenets of good object-oriented
design is that each object is a "black box"
and the programmer should not design
around how an object does its work, only
what the results are. But...reality is real-
ity, and typically, programmers "must"
look at the source code. To work-around
this, we could use an "automatic docu-
ment generator" that would create fully
formatted ".rtf" class description files
(much like NeXT's).

Secondly, while our basic Makefile is
easily created/modified for each new kit,
we would be more inclined to create
more such kits, if the process of putting
the kit together (i.e. generating the
Makefile) were as simple as Project-
Builder makes it for "normal" applica-
tion projects. Therefore, some kind of
"automated makefile generator" could be
used here.

Finally, it's always nice to be able to
"see" your kit. By this I mean program-
mers often want to view the relationship
between objects (in the case of an OO
environment, the class hierarchy). Some
tool for being able to quickly and easily
look at your kit would be helpful. Dia-
gram! from Lighthouse Design is
delightful, but manual. Who wants to
draw out class hierarchies by hand?

FUTURE DIRECTIONS

There are future directions that code re-
use might go in on the NEXTSTEP oper-
ating system. We might talk about these
in future articles. Specifically, other code
re-use strategies might include:

• Using the ".subproj" as the basic unit
of re-usability. This accommodates the
inclusion of ".nib" files as well as other
resources such as sounds and images
(which our current system, sadly, does
not accommodate.)

• Using the ".bundle" as the basic unit
of re-usability. This accomplishes the
same as above, but also opens the
possibility of creating a "/LocalLibrary/
Bundles" folder which would contain
bundles of re-usable code that can be
dynamically loaded. This issue has been

(and probably will continue to be)
debated regarding performance
particularly.

• Shared libraries. This is what NeXT
does with NEXTSTEP. This is useful
(like the bundles approach described
above) for having common, shared code,
which is dynamically loaded.
Additionally (this benefit is also present
in the bundle idea) this common code
could be changed, and all other
applications that use it would have the
new and (hopefully) improved code
automatically! (Much like NeXT's
famous claim about faxing in the Print
Panel.)

• Object repositories and class version
management. This addresses the need to
maintain a history of revisions of code,
and to restore previous versions as
necessary. This is an item that must be
addressed regardless of the choice of
strategies suggested above. Since
irrespective of how you share code,
ultimately there will be the need to track
and manage revisions of code.

CONCLUSION

• In conclusion, you can see how easy
it is to get started with a simple code re-
use strategy right away. This will help to
address many of your needs to leverage
off of previous work. As we continue
with this (hopefully) series of articles,
and experiment (as is always required)
with new tactics, we will cover new and
better ways to re-use your older code
and continue to improve your
programming leverage! !

Information Technology Solutions, Inc.
500 West Madison, Suite 2210

Chicago, Illinois, 60661

312.474.7700
312.474.9361 FAX

N
E

W
 A

D
D

R
E

SS !N
E

W
 A

D
D

R
E

SS
 !

12 Object-Based Computing / December 1993
INFORMATION TECHNOLOGY SOLUTIONS, INC

500 WEST MADISON, SUITE 2210, CHICAGO, IL 60661

You can put your generic ".c" files (such
as functions) or ".m" files (such as cate-
gories) on the "CFILES =" or "MFILES
= " lines, as follows:

CFILES = ReallyWickedFunctions.c
EvenMoreFunctions.c

MFILES = ZippyCategory.m

As with the class files above, the header
files don't need to be explicitly listed.

Next, for any headers such as protocol
declarations, or files that simply define
macros or, enums, or new types, you
must list the header on the "HEADERS =
" line:

HEADERS = $(CLASSES:.m=.h)
$(MFILES:.m=.h) $(CFILES:.c=.h)
SuperNeatProtocol.h
ReallySpecialMacros.h
UnbelievableTypedefs.h

Finally, you have to specify the name of
the directory in the "Headers" folder, that
all of the headers (including a pre-com-
piled header) for this kit will be put in. In
this case:

HEADER_DIR = SuperDuperKit

When you build this library, a complete
library archive file (called "libSuper-
DuperKit.a" will be built in:

/LocalDeveloper/Libraries/Source/
SuperDuperKit"

and copied into:

/LocalDeveloper/Libraries

Headers (including a pre-compiled
header) will be copied into:

/LocalDeveloper/Headers/
SuperDuperKit

Now all you have to do is open a Termi-
nal window, and "cd" into your kit's
source folder:

localhost> cd /LocalDeveloper/
Libraries/Source/SuperDuperKit

and build the library by typing "make
install", as follows:

localhost> make install

This will build and copy everything for
you.

Now...you want use your new library in
your latest project ("MyProject"). To do
this, go to your ProjectBuilder
"PB.project" file, and select the "Librar-
ies" category at the bottom of the first
column in the ProjectBuilder browser.
From the Files menu, select the "Add..."
command to add your new library. Find
your library ("/LocalDeveloper/Librar-
ies/lib SuperDuperKit.a") in the "Add"
panel browser, and click "OK".

Now, one final addition and you're ready
to fly. If already have a "Makefile.pream-
ble" file in your project, then add the fol-
lowing line:

OTHER_CFLAGS = -I/LocalDeveloper/
Headers -L/LocalDeveloper/
Libraries

If you don't have a Makefile.preamble
already, create one with Edit, and add
this line. This enables your project
Makefile to find the new library or librar-
ies that you have specified, as well as any
headers, of the form:

#import <SuperDuperKit/
MyCoolView.h>

Now your ready to go, use anything
that's in that library.

Some additional points about this
approach. You might notice that I haven't
put the libraries into:

/usr/local/lib

and the headers into:

/usr/local/include

The reason for this is that we prefer to
keep everything centralized so that we
can (easily) pick everything up and move
it. The "Makefile.preamble", is simple
enough, and helps us add to the standard
search path for these resources. (I believe
that "/LocalDeveloper" is supported as a
standard search path under NEXTSTEP
Release 3.1 now, but I have confirmed
that.) You can use "/usr/local/lib" and "/
usr/local/include" if you so desire, then
you will not require the "Makefile.pre-
amble" line as specified above.

Secondly, the Makefile outlined above
works fine for NEXTSTEP Release 3.0
and 3.1. But, inevitably, you'll want to

build "fat" or "Multi-Architecture
Binary" libraries for NEXTSTEP
Release 3.1 and on. This requires only
two minor changes:

CFLAGS = -Wall -g

should be changed to:

CFLAGS = -Wall -g -arch m68k -arch
i386

in order to specify the various (in this
case two) architectures you want to build
for.

And this:

$(LIB):$(OFILE_DIR) $(OFILES)

ar rc $(LIB) $(OFILES)

should be changed to:

$(LIB):$(OFILE_DIR) $(OFILES)

libtool -o $(LIB) -s - $(OFILES)

Using NeXT's new "libtool" program to
properly build your libraries. There are
certain bugs with "ar" as used previously,
when applied to "fat" libraries. What I
might suggest, for the time being, if you
are transitioning from 3.0 to 3.1, is creat-
ing a "Makefile_3.0" and making the fol-
lowing changes:

LIB = libSuperDuperKit_3.0.a

OFILE_DIR = obj_3.0

This will enable you to build a 3.0 com-
patible library, if you need to, by simply
typing:

localhost> make -f Makefile_3.0
install

OTHER POINTS

There are several possible additions to
this scheme that you (and we) might
make to provide a more seamless envi-
ronment. First, if your centralized devel-
oper folder (be it "/LocalDeveloper", or,
as in our case, "/ITSDeveloper") is not in
the standard search path for libraries and
header files, and you must add a "Make-
file.preamble" to your projects, you
might consider actually modifying the
default/standard NeXT makefiles
(located in "/NextDeveloper/Make-
files"). Though, the warning here is that
this is DANGEROUS territory since
NeXT may (and probably will) change

Strategies for Re-use continued…

Object-Based Computing / December 1993 11
INFORMATION TECHNOLOGY SOLUTIONS, INC

500 WEST MADISON, SUITE 2210, CHICAGO, IL 60661

To pull this off, there are three simple
things you must do. First, create a folder
called "/LocalDeveloper/Headers" and a
folder called "/LocalDeveloper/Librar-
ies". Inside the "Libraries" folder, create
a folder called "Source". This is where
you will organize the actual source code
for your "kits".

Once you have done this, collect all of
the necessary class, category, function
and protocol source files, into the
"Source" folder. Although you can put
all of your code to be re-used into a sin-
gle "monster" library, it is probably bet-
ter to break this code into separate "kits"
which represent distinct functionality.
This is what NeXT has done, for exam-
ple, with the DatabaseKit, the 3DKit,
and the SoundKit.

Let's call the first "kit" the "SuperDuper-
Kit". Create a folder called "Super-
DuperKit" inside your "Source" folder,
and move your code into it. Now...here is
what we use as a Makefile for building
libraries:

LIB = lib?Kit.a

INSTALLDIR = /LocalDeveloper

MODE = 0644

CLASSES =

CFILES =

MFILES =

CFLAGS = -Wall -g -arch m68k -arch
i386

HEADERS = $(CLASSES:.m=.h)
$(MFILES:.m=.h) $(CFILES:.c=.h)

HEADER_DIR = ?Kit

PRECOMP = $(INSTALLDIR)/Headers/
$(HEADER_DIR)/$(HEADER_DIR)

OFILES = $(CLASSES:.m=.o)
$(MFILES:.m=.o) $(CFILES:.c=.o)

OFILE_DIR = obj

OTHER_GARBAGE =

RMFLAGS = -rf

VPATH = $(OFILE_DIR)

.c.o:

$(CC) $(CFLAGS) -c $*.c -o
$(OFILE_DIR)/$*.o

.m.o:

$(CC) $(CFLAGS) -c $*.m -o
$(OFILE_DIR)/$*.o

$(LIB):$(OFILE_DIR) $(OFILES)

ar rc $(LIB) $(OFILES)

headers:

@echo >$(PRECOMP).h

@for i in $(HEADERS); do echo "#
import \"$$i"\" >>
$(PRECOMP).h; done

@$(CC) -precomp $(CFLAGS)
$(PRECOMP).h -o $(PRECOMP).p

install:$(LIB)

@echo Installing library...

@install -r -m $(MODE) $(LIB)
$(INSTALLDIR)/Libraries

@echo Installing headers...

@mkdirs $(INSTALLDIR)/Headers/
$(HEADER_DIR)

@install -c -m $(MODE) $(HEADERS)
$(INSTALLDIR)/Headers/
$(HEADER_DIR)

@echo Making precompiled headers...

@make headers

clean::

$(RM) $(RMFLAGS) $(OFILE_DIR)
$(LIB) $(OTHER_GARBAGE)

$(OFILE_DIR):

@mkdirs $(OFILE_DIR)

With this Makefile, all we have to modify
is the following lines:

LIB = lib?Kit.a

INSTALLDIR = /LocalDeveloper

CLASSES =

CFILES =

MFILES =

HEADERS = $(CLASSES:.m=.h)
$(MFILES:.m=.h) $(CFILES:.c=.h)

HEADER_DIR = ?Kit

In this case, we'll fill in "libSuperDuper-
Kit.a" for the "LIB =" definition, as fol-
lows:

LIB = libSuperDuperKit.a

You may change the "INSTALLDIR ="
definition, if your "Headers" and
"Libraries" folders are located some-
where besides "/LocalDeveloper".

The "CLASSES =" line is where you put
the names of your class ".m" files, so put
"MyCoolView.m" and "ReallyNeatOb-
ject.m" here.

CLASSES = MyCoolView.m
ReallyNeatObject.m

You won't have to worry about the
header files for these, the Makefile takes
care of this.

&
IT Solutions Developers =

NEXTSTEP Development White

Black

NFORMATION

OLUTIONS
ECHNOLOGY

I
T
S

Information Technology Solutions, Inc.
500 West Madison, Suite 2210
Chicago, IL 60661
312.474.7700 FAX: 312.474.9361

We know

NEXTSTEP

on INTEL

continued on page12

10 Object-Based Computing / December 1993
INFORMATION TECHNOLOGY SOLUTIONS, INC

500 WEST MADISON, SUITE 2210, CHICAGO, IL 60661

spell checker is being distributed with
Mesa, Pages, CustomApp, etc. Is con-
trolling distribution important?

What a software component does when
there are no more licenses is its business.
The Kala Persistent Data Server starts
metering use if no more licenses are
available. Other component vendors may
decide to assume honesty on the part of
their customers and continue function-
ing, even without paid licenses. A variety
of vendor policies must be supported.

Separating the customer (developers)
from the bill-payer (users) may be prob-
lematic; developers still have an interest
in keeping component prices low; Pages
has great incentives to find some other
component vendor if SuperSpell
becomes too expensive for users.

Software costs often pale in comparison
to the costs of software distribution,
installation, and administration. Build-
ing the licensing domain management
tools could put us well on our way to
automatic software distribution & asset
management tools.

IN CLOSING:
This business model for ObjectWare
vendors provides strong incentives for
customers to purchase component soft-
ware, provides clear pathways for
ObjectWare vendors to be compensated
for their efforts, and fosters greater diver-
sity in the applications market, as the
vast supply of ObjectWare is reconfig-
ured and repackaged into application
suites, custom applications, "Works"
integrated applications, etc. Most impor-
tantly, it accurately prices skills in the
application value-added chain, allowing
for an efficient market.

This model preserves the greatest virtue
of Brad Cox's superdistribution (ease of
replication) while teasing it away from
the (uncomfortable) concept of meter-
ware. It also covers the three cases posed
by Mark Thomsen

1. ObjectWare"ISV"Users
2. ObjectWare"Integrator"Users
3. ObjectWare"Users

An ObjectWare Scenario continued… as to ObjectWare distribution. It provides
a vast user market for ObjectWare, and
counts on robust systems tools to man-
age the added complexity. Customers are
happy with this greater complexity since
this reduces software costs.

As technology moves forward customers
must make compromises. Faced with the
choice between the unruly jungle of cli-
ent/server computing and the warm,
fuzzy assurance of IBM's hand-holding
customers performed a quick cost/bene-
fit calculation and chose to jump off the
cliff. An incremental improvement over
IBM's service and price would not have
done the trick...the benefits must be tan-
gible and overwhelming. Does this
ObjectWare world present a comparable
level of rewards for customers?

EDITORS POSTABLE: Marcos is
the founder of the ObjectWare Pro-
fessionals Network. To be added to
the OPN mailing list or to contact
Marcos, please send electronic mail
to shiva@vega.stanford.edu – for
more about OPN see page 14. !

Strategies for Re-use under
NEXTSTEP
Chris Cuilla, ITS

The NEXTSTEP environment is touted with great fanfare among developers because
of its object-oriented development environment and design features, which presents
stronger opportunities than any previous operating system, for the re-usability of pre-
viously written code (in this case "objects" or "classes").

However, when it comes to implementing effective strategies for class, category, pro-
tocol & function re-use, many developers are at a loss, and as a result they seldom, if
at all, re-use old code. This article will cover some basic steps that you can take, either
as an individual developer, or programming team leader, to implement a simple code
re-use strategy.

The first question is, "What tools does NeXT provide to facilitate this code re-use?"
Unfortunately, NeXT provides very little in the way of tools to assist developers in exe-
cuting effective code re-use strategies. Once again, UNIX comes to the rescue provid-
ing a selection of tools (i.e. make, ar) that developers can use to execute these
strategies.

BUILDING A LIBRARY

In this example, we will demonstrate how to execute a simple library based code re-
use system. What we do, currently, is to group a set of similarly related classes, cate-
gories, protocols, and functions into a library or "kit" (in NEXTSTEP parlance). This
kit is compiled and built into a centralized/shared "Libraries" folder, with headers orga-
nized into a shared "Headers" folder.

NEWS FROM ITS
ITS recently signed an agreement
with Hewlett-Packard Company to
develop a NEXTSTEP interface to
HP OpenMail—which is recognized
as the market leading enterprise
messaging backbone. The HP
OpenMail client will be delivered to
several very large NEXTSTEP sites
in Q2/94, a commercial offering will
follow shortly afterwards.

Object-Based Computing / December 1993 9
INFORMATION TECHNOLOGY SOLUTIONS, INC

500 WEST MADISON, SUITE 2210, CHICAGO, IL 60661

Object - BasedObject - Based
ComputingComputing

Information Technology
Solutions
400 West Erie, Suite 301
Chicago, IL 60610
(312) 587-2000
info@its.com
PagerKit • StringSurgeon •
Yahv.app (Header Viewer)

Insight Software
(503) 222-2425
info@insight.com
ImageView • ScannerKit

Itasca Systems, Inc.
(612) 851-3155
info@itasca.com
ITASCA NEXTSTEP Client •
ITASCA ODBMS

Joe Barello Consulting,
Inc.
(212) 580-8366
(212) 580-1857 FAX
info@jbc.com
Tab Palette

Kapiti Limited
(071) 587-0033
(071) 735-3765 FAX
FIST: Complete Dealing
Room System

KCW Consulting
(703) 938-4152
curt@kcwc.com
PhoneTones

Lamb Software Design
41-22 735.96.03
lamb@lsd.ch
LSDDistMatrix

Liveware Corporation
(303) 484-7607
info@liveware.com
LockOut Object Set

Look Glass Design, Inc.
(604) 739-3131
(604) 739-3008 FAX

LDGCreditCardAuthorization •
LGDModem • LDGSerialPort

Metaresearch, Inc
(503) 238-5728
(503) 232-6323 FAX
info@metaresearch.com

Color Digital Eye Objects •
SoundWorks Objects

Mouthing Flowers.
(206) 325-7870

slugg@mouthers.wa.com

Nightshade Software
(403) 492-9343
nightshade@niagara.ucs.ualb
erta.ca

FilteredFields • GraphMe •
NiftyButton

Objective Technologies,
Inc.
Suite 1502
7 Dey Street
New York, NY10007
(800) 3-OBJECT
(212) 227-6767
(212) 227-3567 FAX
info@object.com

ChooserPalette •
GraphPalette • MathPalette •
OTDBKit • OTI Extended Text
Object • OTI Tabular Text
Example Objects • OTString
Kit • SmartFieldPalette

RDR, Inc.
Suite 350
10600 Arrowhead Dr.
Fairfax VA 22030
(703) 591-8713
(703) 273-8170 FAX
info@rdr.com

RDRGadgets •
RDRImageView •
RDRSelector • RDRSound •
RDRSwitchView

The Stepstone
Corporation
(203) 426-1875
hotline@stepstone.com
ICpak 101

Stream Technologies,
Inc.
+358 0 4357 7340
info@sti.fi
Object Store

Target Development
(800) 444-5435
(717) 898-9190
objects@target.com
Link View Palette• Retriever
Palette

Trillium Sound
Research, Inc.
(800) L-ORATOR
(403) 284-9278
manzara@cpsc.ucalgary.ca
Text-to-Speech Kit

Uptime Object Factory,
Inc.
(+41) 55 12 42 29
(+41) 1 932 4923 FAX
info@uptime.ch
FilterKit • Generic Search
Facility for DBKit • Nikita:
Advanced NetInfo Kit

Versant Object
Technology
(415) 329-7542
geoff@osc.com
Versant ODBMS

VNPSoftware
(617) 661-4292
(617) 864-6768 FAX
info@vnp.com
AccessKit • UIBinder Palette

Workstation AG
+41 91 505094
rgi@wag.chation
DBDragger • FuncEdit • Knob

ZGDV Darmstadt

+49 06151 293863
essmann@igd.fhg.de

Realtime Voice and Video
Communication

ZippyTech

(412) 421-9588
ztech@well.sf.ca.us
PO Box 322
Homestead PA 15120

InetObjects Base Collection &
Protocol Collection

We would be happy to list
your company -- please let us
know how to list your com-
pany and what objects are
available from your company.
Filling out the object submis-
sion form on the next page
will also help us to provide a
complete list of resources for
the object based NeXT devel-
oper.

In future issues an important
part of this publication will
be a descriptive list of tools
and objects that are available
to NeXT programmers. We
will be trying to review two
or three objects or program-
ming tools each month. If you
would like to have your
object or tool reviewed send a
copy, with all associated liter-
ature and documentation to:

Ted Shelton, Publisher
Object-Based Computing
c/o I T Solutions
500 W. Madison, Suite 2210
Chicago, IL 60661

We apologize in advance that
submissions for review can-
not be returned.

8 Object-Based Computing / December 1993

Object - BasedObject - Based
ComputingComputing

INFORMATION TECHNOLOGY SOLUTIONS, INC
500 WEST MADISON, SUITE 2210, CHICAGO, IL 60661

Object Catalog
ObjectWare for NEXTSTEP

Pedro decides to purchase a used com-
puter from Ana Franco, a student who
had been running OnDuty under grace
period; her licensing domain is "tainted";
Ana's transgression will deprive Pedro of
a grace period for OnDuty for his whole
licensing domain. Solution: For a while I
thought the licensing domain's the 'Scar-
let Letter' should follow Ana, that it
would not be handed to Pedro. But this
gets ugly quickly. We may say Pedro
has to accept responsibility for Ana's
abuse; then the market value of Ana's
computer is adversely affected. Resolv-
ing this issue may also provide for a way
to deal with economical licensing for
notebook computers, which are detached
from the network periodically.

OPI experiences a one-time spike in the
usage of SuperSpell, resulting in twenty
grace-period licenses to be issued. After
the grace period ends, users find that no
more grace-period licenses are available,
at least until the twenty from the previ-
ous spike are paid for. Solution: Pedro
may set a limit on how large the usage
spike may be; this limits how badly his
licensing domain is tainted.

OTHER THOUGHTS:

This approach to ObjectWare licensing
teeters on the commonality of the
ObjectWare underlying applications.
Will there be much commonality? Is
there a way of measuring what it will be?

With the supply/demand problem for
ObjectWare solved (!), we'd do well to
adopt standard documentation & distri-
bution format, such that ObjectWare
repositories can easily be browsed; third-
party ObjectWare should be as well inte-
grated into the NEXTSTEP environment
as NeXT's own: NeXT should help craft
standards which will encourage a combi-
natorial explosion of multi-vendor
ObjectWare.

ObjectWare vendors must decide to what
extent they want to control the distribu-
tion of their product. Under the scenario
described here, it will be only after the
fact that ObjectWorks will realize their

Objects, palettes, and other
tools for NeXT Developers:

ABComputers

(401) 521-2829
(401) 521-2829 FAX
rca@cs.brown.edu

ProFuse Rule

Anderson Financial
Systems, Inc.

(800) 237-8723
(215) 653-0911
(215) 653-0711 FAX
kits@afs.com

AFSApplication • AFSButton •
AFSEventManager •
AFSFindPanel • AFSForm •
AFSHelpPanel •
AFSLookupsPanel •
AFSMatrix •
AFSMouseCalcPanel •
AFSReportPanel •
AFSScanPanel •
AFSTextField • AFS3DButton/
Graph •
AFSWindow,AFSPanel •
TradeKit

Archetype, Inc.
(617) 890-7544
(617) 890-3661 FAX
info@architype.prospect.com
Document Engine

BenaTong
(614) 276-7859
(614) 276-7859 FAX
benatong@count0.uucp or
chuck@kiwi.swhs.ohio-
state.edu
Serial Solutions

Black Market
Technologies, Inc.
(718) 522-5090
(718) 522-5090 FAX
info@bmt.gun.com
GridPalette • Multicell

Conextions, Inc.
(508) 689-3570
(508) 689-2450 FAX
info@conextions.com
3270Builder • 3270Palette •
3270Toolkit • 5250Palette •
5250Toolkit

Dept. of Radiology
Ohio State University
Hospital
(614) 447-9194
mitroo@magnus.acs.ohio-
state.edu
ImageScrollView/MiniView

Digital Composition
Systems, Inc.
(415) 673-5322
gary@dreyfuss.portal.com
SpreadSheetVue

Digital Tool Works
(617) 742-4057
lexcube!equation@bu.edu
Equation

Doberman Systems
(801) 944-4329
doberman!mike@esunix.sim.e
s.com
Simulation Kit

Elysia, Inc.
(+33) 1 47 49 61 96
(+33) 1 47 14 99 09 FAX
info@elysia.fdn.org
ImageView Palette • ScanKit

Eye Research Institute
(416) 369-6478
(416) 369-526 FAX
info@eric.on.ca

Calera Network OCR Toolkit

Harvard Toolworks, Inc.
(508) 772-4420
(508) 772-4603 FAX
info@magdalen.dmc.com

DBCalendar & DBText
Adaptor

Hot Software
(617) 252-0088
(616) 876-8901 FAX
info@hot.com

BarCodeKit • SerialPortKit

Hutchison Ave. Software
Corp.
(514) 499-2067
(514) 845-5236 FAX
darcy@solutions.ca

NewsKit • QuoteKit

continued on page10

An ObjectWare Scenario continued…

Object-Based Computing / December 1993 7
INFORMATION TECHNOLOGY SOLUTIONS, INC

500 WEST MADISON, SUITE 2210, CHICAGO, IL 60661

W
orldC

lock from
 ITS

Just $45
...and you’ve got all

the time in the world...

800 394-4497

PROBLEM SITUATIONS:
Arsenio Rodriguez, a mere end-user
roaming the Internet, finds and
downloads a copy of Pencil Me In (PMI).
He runs it, thus triggering a Sarrus-
specified grace period for software use.
Arsenio then tosses PMI. Unaware of
this occurrence, Pedro tries to take PMI
for a test drive a month later, and finds
the software refuses to run. Solutions:

1. Rather than refusing to run at all,
PMI runs in demo mode. Arsenio
could have also run it in demo mode
from the start, preventing the license
server from being informed.
2. Refuse to run full-blown software
without authorization from the
administrator of the licensing
domain.

A massive application utilizes hundreds
of components, resulting in a flurry of
requests to the license server. Solution:
This is unlikely to happen, unless all the
components are loaded at the same time.
But components could have "license del-
egates"; SuperSpell could delegate
acquiring a license to the application,
which would then go license shopping
for all its components.

A customer finds he must cut twenty
checks resulting from the purchase of
just one application! Solution: as sug-
gested by Ben Bernhard, one-stop shop-
ping is where the action is. It is easy to
imagine that licensing clearing houses
will emerge such that customers can
write a check to one of them; the clearing
house then distributes payment to all
involved parties. (1-800-OPN-SALE?
Naw, a private concern can probably do a
good job of this.) We may even do with-
out clearing houses altogether if pay-
ment mechanism are built into the
license servers.

Appsoft Write's text engine captures crit-
ical mass; other text engines are at a
decided disadvantage, as Write's text
engine has (for all practical purposes)
become system software. Solution: This
is where the Open Protocols Project
comes in and tries to hammer out @pro-
tocol(TextEngine), such that the market
stays as accessible as possible.

A new version of SuperSpell is shipped
(not directly to Pedro, who is *not* an
ObjectWorks customer, but maybe in the
next release of Mesa). Should we auto-
matically upgrade the SuperSpells used
with Pages? (This is just like upgrading
system software.) Solution: Maybe,
maybe not.

Arsenio decides to use the color separa-
tor in Pages, thus triggering a license
grace period for that component...Pedro
gets to see the bill -> unpredictable
expenditures! Solution: the grace period
provides a buffer for triggering licenses
you did not really want. Also, ISV’s
should inform their customers what the
top price for their product will be,
assuming all the components are
licensed. Alternatively, customers could
pay for all the components up-front, and
get it over with.

ObjectWorks decides to unleash a Super-
Spell virus; the software spreads and
Celia Cruz, the administrator at Mission
Critical Inc., sees she owes money to
ObjectWorks. Solution: Besides being a
terrible PR move, the grace period is key
here. A related case is the licensing of
invisible components, say a DBKit adap-
tor. (Notice the ISV can bundle every
known adaptor with their software; only
the ones used by the customer need to be
licensed.) Components are not free enti-
ties; they are useful only within some
context. Maybe Celia can query the net-
work for which applications utilize
SuperSpell; she can then match the bills
demanded by ObjectWorks with the
usage patterns for the applications which
invoked it. This is a tough problem.

McCaw Cellular talks to Pages about an
enterprise-wide license. However,
SuperSpell is licensed per-workstation.
Solution: Component manufacturers
must be *very* flexible in the way their
software is distributed; the components
should have some built-in circuitry to
account for the various ways in which
they are being licensed by customers,
which affects the bill the license man-
ager will present to the customer.

continued on page 8

6 Object-Based Computing / December 1993
INFORMATION TECHNOLOGY SOLUTIONS, INC

500 WEST MADISON, SUITE 2210, CHICAGO, IL 60661

manager finds that there are five unpaid
licenses which are being granted under a
grace period. This is a clear signal for
Pedro to send more cash to Pages.

Pedro is happy to get fully functional
software to try out, and that the applica-
tion was trivially easy to acquire. Fur-
thermore, he can tune purchases to the
real, actual software usage patterns of
his users.

One of the components shipped with
every copy of Pages is SuperSpell, the
multilingual spell checker from Object-
Works. SuperSpell is, for the first time,
invoked by one of OPI's users. We enter
the grace period for SuperSpell's first
license. Pedro follows the same proce-
dure as before, sending a check to
ObjectWorks at some point, and gradu-
ally upping the number of licenses he
purchases.

Pedro is a bit annoyed at having to pay
individually for these various compo-
nents. However, he may actually be hap-
pier, since he pays only for components
that actually get used; if his users never
touch the table editor, he never has to
pay for it. Pages is very happy, since it
was able to distribute SuperSpell at no
cost to itself. Pages charged Pedro for
their VALUE ADDED, not for any com-
ponents which may have been shipped
with Pages. ObjectWorks is overjoyed,
since it got SuperSpell in more users'
hands.

The plot thickens. Pedro acquires Athena
Design's Mesa, and deploys to his users,
purchasing thirty licenses. Mesa *also*
comes with a bundled copy of Super-
Spell. But OPI does *not* need to pur-
chase any more SuperSpell licenses.
Pedro can leverage the components he
has already purchased in making his new
acquisition. He only needs to pay Athena
Design for their value added by their
application. When he purchases a cus-
tom application which uses Mesa as a
backbone, he can again leverage the
licenses he already paid for.

Pedro is overjoyed that the more he buys
the more he saves! This situation also
points to why ObjectWare should run

even without licenses. While it may be
relatively easy to determine how many
Mesa and Pages users there will be, esti-
mating simultaneous use of component
software is virtually impossible, particu-
larly if the component is invisible to
users.

Let's look at this scenario from the per-
spective of the various players:

Application Developers - will ship
more capable, integrated, and *larger*
applications. It costs the ISV very little
to ship copies of SuperSpell, for exam-
ple, with their software. If SuperSpell is
a user-visible component, then Object-
Works should be the one supporting it;
that is unless SuperSpell has been deeply
integrated with Mesa/Pages, in which
case Athena Design/Pages has "internal-
ized" SuperSpell's functionality, making
for tighter integration than the arms-
length communication normal for appli-
cations from multiple vendors. The ISV
also find it easier to price their applica-
tions: they charge users for their value
added in putting components together.
The ability to price this value added
accurately leads to more specialized
firms and efficient markets. Interestingly,
as sales go through the roof, Pages is not
as tempted to develop their own replace-
ment to SuperSpell: they pay nothing for
it anyway. Time-to-market is enhanced.

Incidentally, this market encourages
application vendors to componentize
their applications to a greater level. Sup-
pose that in order to communicate with
Pages' color separator I have to invoke
the whole of Pages. Well, other applica-
tion vendors probably want to ship just
the color separator with their custom
applications; Pages will be at a disadvan-
tage if it cannot deliver such a compo-
nent on its own.

ObjectWare vendors - are in heaven.
For one, pricing ObjectWare becomes
much, much simpler: they can estimate
their market penetration and amortize
development costs over the huge user
market. (This is similar to the pricing
rationale behind Renderman, PostScript,
and PhotoCD licenses, although system
software can guarantee 100% market

share.) There is, of course, the dead calm
when the ObjectWare vendor must sup-
port application developers before they
even start seeing end-user checks in the
mail. Smart vendors will eat this support
cost rather than charge an up-front fee
for ObjectWare: their job is to get their
ObjectWare into as many customer
installations as possible; once a particu-
lar piece of ObjectWare achieves wide
coverage it becomes systems software
from the application developer's stand-
point. ISV's can also get into this game:
Appsoft would do well to ship Write's
text engine as a basic word processor for
very cheap, as a loss-leader. This causes
other application vendors to utilize
Write's text engine (which customers
have already bought) versus PasteUp's
(which customers would have to pay for
again). Appsoft makes money selling
extensions to their text engine.

With a vast user market becoming estab-
lished, ObjectWare will proliferate.
ObjectWare's customers are other devel-
opers, although the bills are ultimately
paid by users. So in order to convince
other developers to ship with their com-
ponents ObjectWare must attain unparal-
leled quality and its vendors must
provide security to the application ven-
dors. OPN may also get into the game of
setting quality standards and certification
procedures.

Customers - will see lower costs and
better applications. They will *demand*
componentized software. When they
open the appWrapper in Pages, for
example, they see eight or nine compo-
nents which they will be able to leverage
to lower the cost of future software pur-
chases. Users may also utilize scripting
languages or Objective-C to craft their
own applications with these components.
With so many APIs exposed, deeply inte-
grating even multi-vendor applications
will become routine; monolithic applica-
tions will be at a decided disadvantage in
this world.

Customers will also see more applica-
tions, as the available ObjectWare is
reconfigured and repackaged into a vari-
ety of specialized applications.

Object-Based Computing / December 1993 5
INFORMATION TECHNOLOGY SOLUTIONS, INC

500 WEST MADISON, SUITE 2210, CHICAGO, IL 60661

THE INTEGRATED DESKTOP AS
A BASELINE

From a user perspective, NEXTSTEP's
integrated desktop has always offered a
powerful form of leverage. The seam-
less, consistent integration of the Work-
space Manager, Mail, and 3rd-party
applications brought users a new base-
line of interapplication cooperation that
other platforms are only now catching up
with. However, the really unique thing
about NEXTSTEP is the synergy
between custom and shrink-wrap soft-
ware that extends the user environment
into something new and compelling.

EXTENSIBLE SHRINK-WRAP
EXTENDS LEVERAGE

The phenomenon of ObjectWare on
NEXTSTEP is no longer limited to indi-
vidual software components. It now
includes shrink-wrap applications on
NEXTSTEP that offer a new level of
extensibility that has yet to be matched
on any other platform.

That's why I think that much of the
attention being paid to component
software on NEXTSTEP is focusing at
too low a level. Most componentized
software is pure code, useful mainly to
other engineers. Typical components by
themselves are just too small to give
custom application developers any
serious leverage on a large-scale
development effort. There is much more
to be gained by merging custom
applications with extensible, open-
ended, shrink-wrap applications.

Why do extensible applications offer
more leverage than componentized
objects? Because 3rd-party application
developers invest the one to two years
that it takes to develop and refine a high
quality user interface. Why should cor-
porate developers spend 18 months rein-
venting a spreadsheet, word processor,
or scheduling application when they can
harness an existing application and sim-
ply incorporate it into their own work?

The most compelling promise of NEXT-
STEP's object orientation is a wide vari-
ety of shrink-wrap applications with
open architectures and clean, reusable

APIs. The current examples of these
open-ended applications are already sur-
passing the more isolated shrink-wrap
software that is currently available on
other platforms. And that brings me to
my last point

LEGACY VERSUS LEVERAGE

There is a lot of talk these days about
how the availability of SoftPC on
NEXTSTEP 3.2 will make shrink-wrap
applications on NEXTSTEP obsolete,
but I don't see things playing out in quite
that way. In fact, SoftPC's isolation from
the rest of the integrated desktop will
most likely reinforce customer
commitment to NEXTSTEP's native
applications.

Customers who develop and deploy mis-
sion-critical custom applications on
NEXTSTEP are using this technology to
gain competitive advantage today. They
are using object technology to develop
and deploy better solutions faster to their
users. They are harnessing extensible
shrink-wrap applications and integrating
this functionality into their own mission-
critical software.

In short, successful NEXTSTEP custom-
ers are focusing their efforts on looking
forward, not backward.

So if, after experiencing the benefits of
Object Technology, the AppKit, and
NEXTSTEP's integrated desktop com-
plete with extensible shrink-wrap appli-
cations, a customer still wants to relegate
their productivity suite to a dark, isolated
corner of their Workspace using SoftPC,
they can go right ahead and do that.
However, while this company is reliving
the past, its competitors are looking to
the future by building an advantage with
native NEXTSTEP solutions. The bot-
tom line is, if they're not leveraging their
desktops, they might as well not be using
NEXTSTEP. !

A Scenario for the
ObjectWare Marketplace
Marcos Javier Polanco

EDITORS NOTE: This article is from a posting Marcos made to the OPN
(Objectware Professionals Network) mailing list in late July 1993 - I have left the
name of real products and companies intact—their use is necessary. I had
originally thought to write a piece describing OPN and the topics it has addressed.
However, upon re-reading the ObjectWare Scenario, I decided to include it
verbatim, and then add a few comments myself.

Pedro Knight manages a medium-sized NEXTSTEP installation at Operational Pro-
ductivity International. He has just decided to get copies of Pages by Pages. He
acquires a full-blown copy of the software from anywhere (Paget Press' Electronic
AppWrapper, the guy next door, the FTP archives, Pages' BBS, anywhere. As soon as
Pedro activates Pages, the software registers with the license server, standard with
NEXTSTEP, to see how many Pages licenses OPI has purchased. Finding zero, Pages
informs Pedro that it will run without limits for a vendor-specified grace period. Pedro
deploys Pages to his users. At some point before the grace period ends Pedro sends
payment to Pages for the twenty licenses Pedro expects to use simultaneously, and gets
keys to these licenses. Over the next few months, more users try Pages, and the license

ITS is currently accepting applica-
tions for employment from experi-
enced NEXTSTEP developers.
Please send resumes by fax to
312.474.9361 or by email (NeXT
Mail accepted) to info@its.com. No
phone inquiries please.

POSITIONS AVAILABLE

4 Object-Based Computing / December 1993
INFORMATION TECHNOLOGY SOLUTIONS, INC

500 WEST MADISON, SUITE 2210, CHICAGO, IL 60661

a particular Document. I was even able to
use this scheme to implement many-to-
many relationships using correlation
objects.

LIMITATIONS OF THE KIT

One must be aware that the IndexingKit
is not as mature as some of the other kits
and hence has some limitations. The kit
is quite vast and complex. There are
some areas that have not been fully
implemented and others that have not
been adequately tested. If you work with
the core functionality, the IndexingKit
will work well for you. If you venture out
into some of the outer reaches of the kit,
you might encounter some problems.

When the kit was first released with
NEXTSTEP 3.0, it had some major
flaws. The kit was vastly improved with
3.1, and 3.2 promises to be even more
robust. In addition, the kit has not
received the high level of support from
NeXT as, say, the DBKit even though it
is just as complex and perhaps more so.

For the way I have used the kit, it has
been quite robust. Classes that I've used
with success include IXBTree, IXBTree-
Cursor, IXPostingCursor, IXPostingSet,
IXRecordManager and IXPostingList.
IXFileFinder has also worked well for
me although I don't take full advantage
of many of it's features. The IXAttribute-
Query and the query language is not fully
implemented so if you try to do anything
other than straightforward queries, you
will have problems.

CONCLUSION

Despite its limitations, the IndexingKit
as it now exists is a very powerful tool
for developers. It can add a lot of value to
your applications if used properly, and
frees your application from depending
on an expensive relational database.
Were it not for the IndexingKit, PDL
would not be as functional as it now is
without a tremendous amount of addi-
tional expense and engineering over-
head. If you are working on a data-
oriented application, it would be well
worth the effort to look into the Index-
ingKit. !

Leveraging
Shrink-Wrap
on NEXTSTEP
Andrew K. Turk, President
Sarrus Software, Inc.

NEXTSTEP is all about leverage. With
NEXTSTEP's object-oriented develop-
ment environment, MIS departments are
using smaller teams of engineers to
deliver more solutions in less time. Inter-
nal customer satisfaction is on the up-
swing, and businesses are working
smarter.

This is the leverage of NEXTSTEP's
object-oriented programming environ-
ment. But there is another kind of lever-
age to be gained on NEXTSTEP – a kind
of leverage that also grows out of NEXT-
STEP's object model. I'd like to talk here
about how customers are also leveraging
shrink-wrap software on NEXTSTEP
and examine the competitive advantage
that this new leverage provides.

Sarrus Introduces a Powerful
Idea in Scheduling.

Simplicity.

Other scheduling software promises
you power—if you’re willing to give up
ease of use. We developed Pencil Me
In# because you told us you needed
both.

The ROI of Group Scheduling
Enterprises from small businesses to
the Fortune 1000 are discovering that
group scheduling gives them a
tangible return on their investment.
Why? Because people who work in
groups spend a large part of each
work day coordinating meetings,
juggling action items, and hunting
down conference rooms. Group
scheduling software makes these
tasks more efficient for individuals and
for whole organizations.

Power and Ease of Use
Pencil Me In is the leader in group
scheduling on NEXTSTEP for a simple
reason. It’s the only product
that gives you the power of true

enterprise scheduling with the
simplicity of a paper time planner.

Full-Featured and Flexible
Pencil Me In lets everyone manage
their time their own way. Eight
customizable formats with alarms and
security. Click-to-type appointments
and action lists. Group calendars to
coordinate schedules, and shared
calendars to reserve conference
rooms.

Call Us for a Free Demo
Our customers love Pencil Me In. We
think you will too. Call us at
1-800-995-1963 for a demo of Pencil
Me In. And simplify everyone’s life.

SOFTWARE

Sarrus Software, Inc.
565 Pilgrim Drive, Suite C
Foster City, CA 94404
(415) 345-8950
info@sarrus.com

(C) Copyright 1993, Sarrus Software, Inc. All Rights Reserved. Pencil Me In is a trademark of Sarrus Software, Inc. NEXTSTEP is a registered trademark of NeXT Computer, Inc.

Object-Based Computing / December 1993 3
INFORMATION TECHNOLOGY SOLUTIONS, INC

500 WEST MADISON, SUITE 2210, CHICAGO, IL 60661

The Record Manager Layer
This is where the foundation of the lower
layers gets put to good use. This layer, in
which the IXRecordManager is the main
class, implements a persistent object
store of Objective-C objects. With some
limitations, you can literally pass it the id
of an object and it will tuck it away and
return you a unique handle which you
can use as a reference. For example,
suppose you were writing an address
book application. You might define an
object for each entry that looks
something like this:

@interface AddressEntry : Object
<IXRecordTranscription>

{

char *name;

char *mailAddress;

char *phone;

char *fax;

char *emailAddress;

char *otherInfo;

}

- (const char *)name;

.

.

@end

Adding the object to the record
manager is simple:

id myObj = [[AddressEntry alloc]
init];

unsigned int handle;

handle = [recordManager
addObject:myObj];

By conforming to the IXRecordTran-
scription protocol, the object can be
"serialized" by the IXRecordManager
into the data store (an IXBTree). Serial-
izing is a much more efficient way of
moving the object into and out of the
store. The alternative is to archive the
object into a typed stream using the
NXWriteRootObject function which has
a lot of overhead. However, certain data
types cannot be serialized (e.g. void *,
union, struct) and id's are not followed,
but for simple objects like the one above,
serializing is the way to go.

The other important feature of
IXRecordManager is that it can auto-
matically build inverted B-Trees on
certain attributes (instance variables) of
an object. An inverted B-Tree uses the

values of the attribute as keys and the
handle of the object as the associated
values. This way we can quickly search
for an object based on the value of one of
its instance variables. In our example we
probably want to be able to find an
AddressEntry based on the name
attribute. We would set up the attribute
inversion as follows:

[recordManager
addAttributeNamed:"entry name"

forSelector:@selector(name)];

[recordManager
setComparator:&IXCompareMonocas
eStrings

andContext:NULL

 forAttributeNamed:"entry name"];

[recordManager
setTargetClass:[AddressEntry
class]

forAttributeNamed:"entry name"];

The first statement creates the attribute
inversion. The second statement defines
a function that will compare the values of
the attribute so that it can be inserted
properly into the B-Tree. Whenever sub-
sequent objects are added to the store,
the IXRecordManager will send the
name message to the object to determine
the value of the attribute. The returned
value will be the key used to define the
location in the inverted B-Tree, and the
handle of the object will become the
value associated with that key. The third
statement associates the AddressEntry
class with the attribute. Note that an
IXRecordManager can manage objects
of various classes in the same store.

With attribute inversions we can quickly
find an object that has a certain value for
one of its attributes by searching the
inverted B-Tree based on the value we
are given, then reading the handle (or
handles) associated with that value.

The File Indexing Layer

This top layer of the IndexingKit is a
sophisticated system for indexing files in
a UNIX file-system. It contains classes
that manage conversion of files into an
acceptable format, parse the file for
words, build up indices of those words,
and allow queries to be performed based
on the words. The main class,
IXFileFinder, can be given a directory

path containing files to index. It will
recursively scan the directory and create
an index of the textual content of the files
it encounters. The Digital Librarian
application is basically a front-end to the
IXFileFinder.

HOW PDL USES INDEXING KIT

The Perennial Document Librarian
(PDL) is an example of how the power of
the IndexingKit can be leveraged effec-
tively. PDL is a system for managing and
sharing libraries of documents among
users on a network of NEXTSTEP com-
puters. PDL includes a server that man-
ages a secure library where the
documents are stored. It features access
control, check-in/check-out, revision
maintenance, searching, notification and
compression.

PDL uses the IndexingKit in two ways.
First it uses it at the IXRecordManager
level to store records of the documents in
the library as well as other information.
It also uses the IXFileFinder to build
indices of the textual content of docu-
ments in the library.

With the IXRecordManager, I was able
to build a quasi-relational/object-ori-
ented database. I built a model (schema)
of the database which showed all the
objects (entities) and the relationships
between them. This model was then
implemented by using Objective-C
objects which are stored in the database.
Objects contain references to other
objects not via the id but via the unique
handle assigned to each object in the
database. I then built inversions on these
references so that I could easily find
related objects. For example, I have a
Document class and a Revision class.
There is a one-to-many relationship
between these classes such that a Docu-
ment can have many Revisions, and each
Revision is a version of a single Docu-
ment. This relationship is formalized by
including in the Revision class a refer-
ence to the instance of Document it is a
revision of (i.e. an instance variable that
contains the handle of the related Docu-
ment object). By building an inversion
on this reference, I can easily find all the
Revision objects that are associated with

A forum for developments in object-based
computing in the NeXT community.

An ITS Publication$

Editor: Eric Wespestad

Circulation: Annalea Sommerville

Publisher: Ted Shelton

EMail: obc@its.com

Information Technology Solutions, Inc.
500 West Madison, Suite 2210

Chicago, IL 60661

Subscription Information
12 Issue subscriptions are $28. Please
specify hard copy version, or electronic
version (available only to subscribers with
NeXT Mail). We regret that subscriptions
are available only on a pre-payment basis.
Please send checks or money orders to:
Information Technology Solutions, Inc.
500 W. Madison Suite 2210, Chicago IL
60661. Please include your name,
company, address, fax and telephone
numbers, and an EMail address if available
(specify NeXT Mail). Object-Based
Computing is available on-line to
subscribers.

Advertising Information
Center pages 2 (7.5×9.5) $1100 • Inside
front or back pages 2 (7.5×9.5) $800 • Full
page (7.5×9.5) $350 • Half page (7.5×4.5)
$200 • Third page (7.5×3) or Full column
(2×9.5) $120 • Business card (3.5×2) $50.

Article Submissions
Thank you for letting us know what kind of
articles you’d like to read. We are also
looking for articles to print... so please
consider sharing some of your experiences
with the NeXT community. Please send
submissions or questions about submission
deadlines to the editor.

2 Object-Based Computing / December 1993
INFORMATION TECHNOLOGY SOLUTIONS, INC

500 WEST MADISON, SUITE 2210, CHICAGO, IL 60661

NFORMATION

OLUTIONS
ECHNOLOGY

I
T
S

Object - BasedObject - Based
ComputingComputing

work of data management. The Index-
ingKit provides objects that allow cre-
ation and management of the database
itself. The kit does not implement any
particular type of database such as rela-
tional or object-oriented, rather it pro-
vides fundamental building blocks that
allows programmers to develop their
own custom database.

The core of the kit provides reliable
transaction based data storage and struc-
tures for efficient data organization. At
higher levels of the kit are classes that
implement a persistent object store,
allowing Objective-C objects to be
directly inserted into the database. This
is especially nice for NEXTSTEP pro-
grammers. At still higher levels of the kit
are objects that can parse files and build
indices of their textual content, and it is
from this functionality that the Indexing-
Kit gets its name.

Besides data storage and management,
the IndexingKit provides objects for fast
searching and retrieval of data. Objects
can be written to and read from the data-
base directly without having to be
archived into a typed stream. Also
instance variables of objects in the data-
base can be read directly without having
to read the entire object out of the data-
base. This makes data access fast and
efficient.

Any application that manages informa-
tion either at a personal or a group level
can benefit from the functionality of the
IndexingKit. Often, it is not practical to
rely on a commercial database for your
application. Commercial databases often
add cost as well as overhead. For exam-
ple, a commercial database would be
overkill for an address book application,
yet the IndexingKit can easily be used to
store and search address book entries
without any additional cost (as long as it
is bundled with NEXTSTEP).

Bulletin board systems, news feed man-
agement, customer service tracking, flat-
file databases, calendering, address

books, scheduling, and client tracking
systems are all examples of applications
that can benefit from the IndexingKit.

THE INDEXINGKIT
ARCHITECTURE

The IndexingKit consists of several lay-
ers of functionality. Each layer, consist-
ing of several classes, is built atop
another. The application programmer
can use the kit at any level depending on
the requirements. In my opinion, the
IXBTree class is really the foundation of
the kit. Lower levels of the kit provide a
backing store for the B-Trees and higher
levels use the B-Trees to contain data,
record attribute inversions and indices.

I will discuss briefly the four layers of
the kit and the key class of each layer.

The Storage Management Layer

This lowest layer provides a backing
store for small to large sets of data. It
allocates and manages blocks of storage
for a client application. IXStore is the
key class of this layer. It manages mem-
ory-based storage consisting of elements
called blocks. These blocks are relocat-
able within the store and thus the store
can be compacted to optimize memory
usage. IXStore also implements transac-
tion management so that several opera-
tions made to your database may be
committed to the store at once. This also
allows you to undo the changes before
committing them. A sub-class of IXS-
tore, the IXStoreFile, keeps its storage in
a file.

The B-Tree Layer

This next layer up implements B-trees,
which define an organization that allows
for fast searching of data elements and
efficient paging. The main class here is
IXBTree. It is similar to the HashTable
class in that it stores ordered associations
of un-typed data using key/value pairs,
therefore it can be used as an alternative
data structure to the HashTable and List
classes.

IXBTrees are created in an IXStore (or
IXStoreFile) and thus gain the benefit of
transaction management.

IndexingKit continued…

VOLUME 1, NUMBER 5, December 1993

Published often by

INFORMATION TECHNOLOGY SOLUTIONS INC.

A forum for developments in object-based
computing in the NeXT community.

Submissions Encouraged!

Thank you for letting us know what kind
of articles you’d like to read. We are also
looking for articles to print... so please
consider sharing some of your experi-
ences with the NeXT community.

Object - BasedObject - Based
ComputingComputing

INFORMATION TECHNOLOGY SOLUTIONS, INC
500 WEST MADISON, SUITE 2210, CHICAGO, IL 60661

editorsDesk
A lot seems to be happening on the
object-based computing front recently—
from the activities of objectware compa-
nies (those that sell objects, possibly in
addition to applications and consulting
services), to rumors of large new “object
providing” companies being created.
Hopefully we are beginning to see signs
of a vibrant new marketplace? Will
NeXT’s latest operating system release
(NEXTSTEP 3.2) and the forthcoming
Portable Distributed Objects play a
greater role? We’ll have to wait and see.

While preparing some notes on the
ObjectWare Scenario presented in this
issue, I came across the following in one
of my mailboxes – lucky for us a group
called OPN is taking this seriously.

> “If you are a vendor, are you ready
to componentize your software?”

“No, because the developer market
is much smaller than the user market
and most of the user market knows
absolutely nothing about objects.
First, we have to build the market by
educating the marketplace before
we try to sell something.”

One quick (but important) announce-
ment: WE HAVE MOVED. Information
Technology Solutions, Inc. relocated to
larger (and I must say, fancy) space in
Chicago’s CityBank Tower. See the back
page and page footers for the new
address. During this move I (I’m not Ted
by the way :-) have adopted the editors
role of OBC.

IndexingKit:
The Unsung
Object Library
Phil Zakhour, San Franciso
Information Technology Solutions

One of the most neglected object librar-
ies that NeXT has to offer is the Index-
ingKit. I believe this is so because it is
useful at the "back-end" of an applica-
tion and therefore lacks the glamour and
sex appeal of GUI related object libraries
such as the AppKit and the 3DKit. Also,
unlike the AppKit which is used by most
NEXTSTEP applications to build the
user interface, the utility of the Indexing-
Kit is more limited in scope to applica-
tions that deal with information
management. It is important not to let
these drawbacks hide the fact that for
information management applications,
the IndexingKit is one of the most useful
and powerful kits that NeXT has to offer.

In this article I will give an overview of
the IndexingKit, why it is useful, and a
quick rundown of its key objects. I will
also give a practical example of how an
application that I developed, the Peren-
nial Document Librarian, was able to use
the IndexingKit to its advantage.

WHAT IS THE INDEXINGKIT?

The IndexingKit is the only kit NeXT
offers that is data oriented. The DBKit is
not a data oriented kit because all it does
is provide a layer between the user and a
commercial database which does all the

thisIssue
In this issue the aspects of a component
based object marketplace are explored
from several different view points: from
a tour of the IndexingKit that is bundled
with NEXTSTEP - and how it was used
in building a shrink-wrap application, to
the mechanisms for licensing of (or pay-
ing for) third-party objects that are used
within third-party applications, to the
treatment of third-party applications as
reusable objects (though APIs) in and of
themselves, and, rounding this off is
some advice on tailoring and operating a
development environment for producing
your own objectware for NEXTSTEP.

contents

editorsDesk . 1
thisIssue. 1
objectCatalog 8

features

IndexingKit: The Unsung Object
Library. 1
Leveraging Shrink-Wrap on
NEXTSTEP. 4
An ObjectWare Scenario. 5
Strategies for Re-use under
NEXTSTEP. 10continued on page 2

