
Modeling Your Business With Objects May 1994

1

Modeling Your Business
With Objects
Executive Summary

Enterprise Objects Framework builds on
NeXT's leadership in object-oriented software
and redefines how custom business applications
are constructed, setting a new benchmark for the
capability and scalability of object-oriented
systems.

Using the Enterprise Objects Framework,
programmers can build business-centric
information systems by defining custom objects
that tightly integrate business information and
the logic associated with managing or processing
that information. The Framework seamlessly
extends the capabilities of NEXTSTEP and
NeXT's Portable Distributed Objects (PDO),
enabling developers to create highly reusable
business objects that store data in relational
databases.

Enterprise Objects simplify the process of
building complex business information systems
because it eliminates the need to duplicate data
processing code in multiple application modules.
The Framework enables programmers to create
business objects that incorporate business process
logic once and use those objects to manage
enterprise-wide operations, even when the data is
represented differently in different divisions of
your organization.

Applications created using Enterprise
Objects Framework can also incorporate
customizable, vertical industry business objects
supplied by industry specialists. By simply
mapping the data elements of Enterprise Objects
to the data structures used to store information,
programmers can take advantage of pre-defined
business processes designed to properly process
business information. Programmers customize
only those processes that require modification to
meet special requirements.

This white paper first defines business objects
and provides an overview of the technology used
to incorporate these objects in enterprise
information systems.

I. Defining Business Objects

Developing information systems that meet com-
plex business requirements has never been easy.
Numerous methodologies and modeling techniques
have been introduced for capturing requirements,
analyzing the business and building business applica-
tions. In theory, all of these methodologies and mod-
eling techniques have one common goal: simply and
accurately model real-world systems without com-
plexity in order to develop applications that mirror
an organization’s business.

However, modeling large, complex systems in
practice is an extremely challenging proposition.
Many methodologies partition the entire system into
domains, or subsystems, similar to the divisions of a
large organization. Each subsystem is further decom-
posed into a data model, a process model and other
functional models. While developing separate func-
tional models for a complex system can be useful in
implementing software systems, the approach does
not deliver a simple, high-level representation of the
system or the organization as a whole.

An alternative approach is object-oriented analy-
sis of real-world systems which results in a model
that integrates both data and process. Object-oriented
analysis involves defining objects as entities of
importance that can be described in terms of
attributes, or characteristics of importance and pro-
cesses which they may respond to or initiate.

Object-oriented analysis and design techniques
have been successfully applied to build complex,
real-time applications such as navigation and guid-
ance systems and telecommunications switching sys-
tems. The delivery of these complex applications has
been attributed in part to the use of objects, both in
modeling the system and in the implementation of
discrete system components.

Modeling a Customer Service Operation
Object-oriented analysis and design techniques

can also be successfully used to develop business
information systems. Business objects, which tightly
couple business information and the processes that
are required for properly managing that information,
can be used to model the business and its operation.

The resulting business model is especially useful
for understanding and communicating how the busi-
ness operates. It will also be an important design
specification for building business applications.

Modeling Your Business With Objects May 1994

2

Just as objects simplify the complexities of the
real-world, they simplify the process of implement-
ing the development of business applications. The
unification of the business model and its physical
implementation through business objects creates
enormous opportunities for reducing the time and
cost associated with implementing custom applica-
tions.

To demonstrate the simplicity of the object-ori-
ented approach, a typical customer service operation
is modelled in Figure 1. The model is composed of
the following business objects:
• Customers: characterized by name, shipping and

billing addresses, credit card account number, cus-
tomer type and phone number. Customers process-
es include information updates and establishing
credit limits.

• Major Accounts: a subtype of customers which are
characterized by the same attributes and which per-
form the same processes. However, the algorithm
employed to determine credit limits for major ac-
counts is different than that used for ordinary cus-
tomers.

• Products: described by product codes, descriptions
and terms under which products may be traded.
Products respond to requests for current yield,
risk, and other evaluation criteria.

• Portfolios: describe the set of products owned by
an customer. Portfolios respond to requests for cur-
rent valuation and requests to buy or sell.

This simple example, demonstrates how the
object-oriented concepts of encapsulation, inherit-
ance and polymorphism reduce the complexity of
the business model by removing unnecessary details,
reusing common object definitions where possible
and enabling process definitions to be overridden
when necessary.
1. Encapsulation means the implementation

details are hidden (i.e. that data structures
used to store customer information and the
details of processes need not be revealed.)

2. Inheritance means that the subtype of an
object shares the same data and process
definition as its parent unless those
definitions are overridden.

3. Polymorphism means that a subtype can
override its parent’s definition of a particular
process and that it responds differently than
its parent to the same process request.
This model of the business enables analysts,

users and managers to communicate and understand
the most important aspects of the operation because
it represents business entities in a form that naturally
combines information and process.

Implications of the Object Model
Only after the business model has been defined,

should business objects be implemented. During the
design and implementation of the application, the
business model acts as the blueprint for building
application components. Externally, it will appear
that each of the components behaves the same way
its real world counterpart behaves. Internally, how-
ever, the implementation of these objects requires
detailed knowledge of process logic and data storage
and retrieval. For example, customer information
might be stored in one or more tables of a relational
database. It will become necessary to understand and
implement the business logic for product pricing,
credit approval and other business processes per-
formed by these business entities. If the actual busi-
ness information system is deployed in a client/
server architecture, considerations for how the
objects will be deployed on the network will also be
required.

Figure 1

d ata

d ata

d ata

d ata

PORTFOLIO

CUSTOMER

MAJOR
ACCOUNT

PRODUCT

Modeling Your Business With Objects May 1994

3

Business objects minimize the amount of code
required to construct applications

Applications are typically composed of screens,
often referred to as forms. These forms display busi-
ness information and allow users to directly manipu-
late data. The generally accepted approach for
incorporating business process into an application is
to implement the logic as part of the application
interface. For example, a special process for updat-
ing customer information would be programmed
into each and every form that would allow customer
updates to occur. However, this creates a costly prob-
lem. Every copy of the customer update process
would require modification if the customer update
process needed revision.

 Business objects can minimize the amount of
code required to construct applications by localizing
business information and the process logic in the
business object itself. Application screens are merely
a means for viewing specific attributes of particular
entities and for capturing user input in the form of
action requests. For example, a customer contact
screen would display and allow updates to customer
information and might allow the user to click a but-
ton that causes the customer object to establish a
credit limit based on credit available using his credit
card.

Any number of screens could be created that dis-
play customer information and none of the screens
would require any programming to be able to update
displayed customer information or to request a line
of credit. Users could initiate these business pro-
cesses from within any screen that allowed the user
to send an action request to the object.

This represents a fundamental departure from
the generally accepted approach used today which
requires that all process logic be physically imple-
mented as a part of the interface.

Moreover, the business model spans application
boundaries. After a customer object has been defined
and incorporated in the customer service application,
it can be reused in another application. Because all
applications make use of a common business model,
business objects can easily be reused.
Business objects encapsulate data storage and
retrieval

In addition to physically implementing business
logic as a part of the application interface, data stor-
age and retrieval is typically coupled directly to the

interface. Specifically, application screens that dis-
play customer data directly reference the tables and
columns containing that data in a relational database.

These direct references have serious implica-
tions for the long-term maintenance of applications.
Not only is maintenance difficult, but very little, if
any of the application can be easily modified and
reused. For example, changes to the underlying data-
base structure require modifications to all screens
that display information from the modified tables,
including all of the associated processes. For exam-
ple, any screen displaying the data element
PART_NO from a table named PRODUCTS, would
require interface modifications if the PART_NO data
type was changed from CHAR(8) to CHAR(12). A
simple change to extend part numbers also affects
every process in the entire application that involves
part numbers.

The business processes that are implemented
within an application are tightly coupled to a single
data structure. As a result, it is nearly impossible to
construct, for example, a single health care records
management system that provides a consistent set of
functionality for multiple HMOs unless each HMO
is willing to convert their data to a common format.

An object-oriented approach can be used to
solve these problems. By localizing data storage and
business processes within objects, rather than propa-
gating copies of data and process to application
screens, the resources required to implement
enhancements or modifications is drastically reduced.

The business objects themselves can be used to
insulate the internal processes from changes in the
external data structures used to store data. Each
instance of a business object contains properties, or
data, that characterizes that particular instance (e.g.,
each customer has a name and phone number). All
of the business processes that are initiated by the cus-
tomer object references only those attributes; these
processes never need to reference the external loca-
tion of data. An external service, or technology, can
be employed to provide data storage and retrieval
facilities for moving data between business objects
and the external data source.

By delegating the data storage and retrieval func-
tion, the business objects provide a standard business
process through applications that access data stored
in different formats.

Modeling Your Business With Objects May 1994

4

Business objects can be deployed anywhere
Business objects are location independent, mean-

ing they can take advantage of their environment to
perform more effectively. Just as a shipping and
receiving function might be optimally performed in
a large warehouse rather than an office setting, appli-
cations composed of business objects will likely pro-
vide better performance if computationally intensive
operations are performed on large servers.

Applications developed using procedural lan-
guages and 4GL tools typically have little or no flexi-
bility in distributing business processing. By tightly
coupling the process with the application screens,
the process logic must usually be performed locally
on the client workstation. While it is possible to use
remote procedure calls and other mechanisms to dis-
tribute some expensive processes, this approach is
difficult.

An object-oriented approach using business
objects is considerably less complex. Business
objects communicate with each other by sending
messages that trigger business processing, much like
a customer picking up a phone to call in an order.
The customer might be far away from the office
where the order is placed and the office might be far
away from the warehouse where the order is filled.
Similarly, an application composed of customer
objects, order objects and product objects could dis-
tribute these objects across a network and do so with-
out the user of the application knowing where the
objects are actually performing their processing.
More importantly, the application developer can
implement the business objects without concern for
how the objects might be deployed at runtime. Devel-
opers have complete flexibility in configuring the dis-
tribution of objects.

Applications making use of business objects can
dynamically configure where the business objects
are deployed without requiring any special program
modifications. This capability enables applications to
take advantage of networked resources to perform
computationally intensive processes simply by relo-
cating a business object.

II. Enterprise Objects Framework

Enterprise Objects Framework, the second gen-
eration database application development framework
available from NeXT, is unique in the industry in its
ability to define and use business objects.

Components of the Enterprise Objects
Framework

Enterprise Objects Framework consists of a
number of components that support the definition,
implementation and distribution of business objects.
Enterprise Object Modeler Application

This application allows developers to create both
the database schema and the business model for an
application. Enterprise Object Modeler allows an
analyst to define associations between properties of
the business model and the underlying entities and
attributes which will be used to store the data. For
example, the Customer Enterprise Object might have
properties (such as name, address, credit limit)
which are actually stored in a relational database
tables Customers (in the fields CUST_NAME,
CUST_CREDIT_LIMIT) and Addresses (in the fields
ADDR_STREET, ADDR_CITY, ADDR_STATE).
Both the object model and the data model are then
used to dynamically transform requests for data into
explicit data manipulation commands.

The business model is extensible and provides a
public API that allows developers to access exten-
sions to the model. The model can be referenced or
dynamically modified by the application at runtime.
Defining alternate associations between a single busi-
ness model and different database schemas allows
applications constructed using business objects to
consistently process information stored in different
data sources or data structures.

The non-proprietary format of this model also
allows developers to use their preferred design and
analysis tools. Enterprise Objects Framework is
designed to enable development of robust database
application development tools, integrate design infor-
mation from existing CASE repositories and enable
creation of end-user data access products.

In addition to allowing analysts to create busi-
ness models and database schemas, the Enterprise
Object Modeler application provides utilities to cre-
ate a default schema from an existing database and a
default object model based on the database model.
These utilities help to quickly build new applications
that access existing databases by creating default
models which analysts can quickly refine.

Modeling Your Business With Objects May 1994

5

User Interface Control Framework
It is impossible to create all the possible views

of customer information. However, it is possible and
highly desirable to define a single set of business pro-
cesses for managing customer information, regard-
less of how the information is being viewed.

The UI control framework is designed to pro-
vide enormous flexibility in the visual presentation
of data representing a business object. The process
and data is fully encapsulated within the business
object, which uses basic messaging facilities to pass
information to the user interface.
Object persistence

A common problem facing application develop-
ers is that most database development tools build
applications that fully depend upon the underlying
schema. Modifying the underlying table structure
directly affects the application. Enterprise Objects
Framework insulates the application from the under-
lying data structure. Changes to the database schema
can easily be accommodated simply by remapping
the properties of Enterprise Object classes to alter-
nate attributes of the database schema.

The persistence framework makes use of infor-
mation contained in the business model to dynami-
cally generate default DML (data manipulation
language) required to access or modify data in an
external data source. As a result, developers are
never required to explicitly define data access mecha-
nisms within a business object. This facility com-
pletely insulates business objects from the
underlying data structures used to provide data stor-
age.

However, the persistence framework can be
tuned to improve application performance by provid-
ing programmers with the ability to intercept and
modify default DML and replace it appropriately.
Developers can also employ stored procedures and
alternative locking strategies or transaction models
to improve performance of the persistence mecha-
nism transparently to business objects.
Concurrent Access to Multiple Data Sources

Enterprise Objects can access data simulta-
neously from more than one data source. In addition,
by taking advantage of the dynamic binding capabil-
ity of the runtime environment, Enterprise Objects
can fetch data from one data source and store it in
another, if necessary.

Seamless Distribution Capabilities
Enterprise Objects look and feel just like other

NEXTSTEP objects and they have the ability to be
deployed on a heterogeneous set of platforms just
like other NEXTSTEP objects. The fact that they
have the ability to store information in a relational
database is irrelevant. However, this capability sets
Enterprise Objects apart from objects that can be cre-
ated in other development environments.

Portable Distributed Objects (PDO) bring
NeXT's Distributed Objects technology to other oper-
ating systems such as HP-UX, SOLARIS, OSF/1,
and AVIION, facilitating the development of server-
based applications that make use of objects that can
send messages to objects on other computers.

Enterprise Objects Framework runs transpar-
ently on PDO and allows server-based applications
to access external data sources. Enterprise Objects
can both access and process information anywhere
on the network. This capability provides developers
extraordinary flexibility in building applications that
make most the effective use of resources on the net-
work.

III. Summary

Object-oriented technology, including modeling
techniques and programming environments, have
long been promised as a means for building more
robust business information systems more quickly.

Business objects, which tightly couple business
information with the processes required to correctly
manage that information, provide a useful construct
for modeling business requirements. Fully under-
standing this construct and its implications for tech-
nologies required to support the concept makes
possible the development of valuable technologies
for building business systems that reflect a business
model.

Enterprise Objects provides fully enabled busi-
ness objects that leverage NeXT’s core object tech-
nologies including Portable Distributed Objects and
Distributed Objects. Portable Distributed Objects
and the Enterprise Objects Framework programmers
can more easily define, implement and distribute
business objects, setting a new benchmark for the
capability and scalability of object-oriented systems.

