
Object-Oriented
Applications
Development With
NeXTstep

2

Object-Oriented
Applications
Development
With NeXTstep

Executive Summary
 Rapid development and deployment of mis-
sion-critical custom software applications
are key to success in the 1990’s. This paper
describes the advantages of developing those
applications using NeXTstep, the industry’s
most extensive object-oriented systems soft-
ware. NeXTstep’s advantages include its
thorough object orientation and its inte-
gra ted s e t o f deve lopment too l s .
Programmers can develop applications five
to ten times faster since they need to write
less code. Benefits also include reduced learn-
ing time, improved maintainability and
reliability, code reusability, increased pro-
gramming flexibility, and the ability to
manage more complex applications.
For users, NeXTstep applications can be
developed and implemented more quickly.
NeXTstep applications have professional-
quality interfaces making them easier to use,
and which integrate well with the productiv-
ity applications needed by users. This paper
also describes the tools available to NeXT-
step programmers, including NeXTstep’s
support for client-server computing and
industry standards.

I. Introduction: Building Mission-Critical
Custom Applications with NeXTstep

“The other workstation vendor to watch is
NeXT. . . . Developers positively love it.
Every NeXTstation comes with a complete
set of development tools, and there is simply
no better environment for building graphi-
cal applications. . . . People who are now
using the NeXTs are nothing short of gaga
over it, and their lust is justified.”

– Byte, Outlook ‘92 issue, p. 164

Mission-critical custom applications are key to suc-
cess in the '90's for organizations of all kinds.
Custom applications are needed by virtually every

large and medium-sized enterprise. But building
custom applications is proving to be very difficult.
The demand for graphical user interfaces has risen
sharply, placing greater demands on developers.
And even without the demand for friendlier appli-
cations, MIS groups are faced with a three-to seven-
year backlog of new applications to build and old
applications to maintain.

One response has been to port applications from
mainframes to workstations. A related response has
been to upgrade to machines with faster processors.
But neither downsizing nor increasing the raw
horsepower available to programmers has produced
applications more rapidly or with appreciably more
functionality than older mainframe software.

Why? While desktop computing has made great
leaps in performance, doubling in power every two
years, improvements in the way software is written
have occurred at a snail's pace. The porting of cor-
porate applications from mainframes to networks of
workstations has not remedied the problem, since
downsizing has often meant simply using old devel-
opment tools and methods on faster workstations.

To improve productivity, programmers will have to
modernize their development methods and tools.
Software must become more maintainable and code
more modular and reusable. But most importantly,
programmers must use tools that require them to
write less code.

Developers need a new method of writing soft-
ware–and that new method is object-oriented
programming (OOP). Developers need a rich and
complete set of object-oriented tools–and that set of
tools is NeXTstep.

II. NeXTstep

NeXTstep is object-oriented system software
(OOSS) for workstations, designed to help organi-
zations close the applications gap by making
programmers more product ive. NeXTstep
improves programmer productivity in two ways.
First, NeXTstep is a thoroughly object-oriented
software architecture. Providing a rich set of preb-
uilt objects for common functionality, NeXTstep
allows programmers to write less code. Second,
NeXTstep provides a complete set of development
tools which have been crafted to work together.

3

NeXTstep Is Thoroughly Object-Oriented

Object-oriented programming is the first significant
revolution in software technology since the devel-
opment of the graphical user interface. The entire
architecture of NeXTstep is designed to support
object orientation.

Objects are the key to understanding object orienta-
tion. They are self-contained chunks of code
containing data and associated behavior (proce-
dures). Objects send messages to each other
requesting information and services. Together,
these objects and the messages they send comprise
a complete software application.

A software object represents something in the real
world such as a user interface button or window, a
data entry form, a business graphic, an employee
record, or an information browser. Objects allow
programmers to break a problem into small man-
ageable components, modules of code, making it
simpler for the programmer to design a logical
structure. This process has two main benefits:

• Other engineers can design additional
objects that implement features and treat
the rest as a “black box” and

• Ramp-up time is shortened when a differ-
ent engineer takes over maintenance of the
software

Objects can be reused. Organizations can construct
libraries, for example, of common analysis, forms,
and report objects which can be used across many
kinds of applications.

Object-oriented programming helps developers
manage complex applications because they only
need to understand the messages that objects send
to each other to understand how a program works.

Sending a message to an object only requires
requesting what needs to be done, without needing
to understand how the task will actually be done.
Object-oriented programs hide the details from
everyone but the programmer of that object. Pro-
grammers focus on the architecture of the system:
how the application is modularized into real-world
objects offering specific kinds of functionality and
how the application manages this functionality by
passing messages between objects. Developers can
operate on a higher level of abstraction and can
ignore implementation details subject to revision as
the software matures.

Being an object-oriented development platform,
NeXTstep simplifies program development, makes
cooperation among programmers easier and main-
tenance simpler, and gives the programmer a more
comprehensive view of a program’s architecture.

NeXTstep Provides A Complete Set of Tools

To its object-oriented programming language,
Objective-C, NeXT has added object-oriented sys-
tem software, tools for developing interfaces and
managing objects, and a complete object frame-
work for adding sophisticated functionality without
requiring programmers to write additional code.

NeXTstep provides an extensive set of fundamental
building blocks, an Application Kit of more than
one hundred objects. This Kit reduces substantially
the amount of code that needs to be written.

NeXTstep’s Applications Kit supplies all of the fea-
tures of a consistent user interface. NeXTstep
makes all applications easier to create, enhancing
programmer productivity. By providing complete
tools to build and modify user interfaces, NeXTstep
allows developers to focus on their application’s
unique features and encourages and enables them to
develop custom applications with the look and feel
of quality commercial software. And by furnishing
user interface construction tools which encourage
consistency, NeXT makes every application easier
to use. By programming in NeXTstep, it is simple
to create applications that are not only friendly but
are also tailored to meet each organization’s unique
requirements.

With NeXTstep, programmers can reduce develop-
ment time significantly, a valuable productivity
gain for any business that relies on a mission-criti-
cal custom application.

“NeXT is really making a splash in launch-
ing SBC’s [Swiss Bank Corporation] busi-
ness in interest-rate derivatives. . . . Solo’s
team wrote the application in three months,
which is half the time it would have taken on
a Sun workstation, he says. ‘I’ve never
developed something so substantive in so
little time.’”

– Wall Street Computer Review, Volume 9, No. 1
(1991), p. 46.

4

Recognized by the Industry

Given these advantages, it is no surprise that NeXT-
step has received the Software Publishers’
Association’s Fluegelman Award for innovative
software as well as Computer Language maga-
zine’s Product ivi ty Award for interact ive
application development environments.

III. NeXTstep: A Consistent Philosophy

NeXTstep is the first desktop computing operating
system environment designed for the developer of
software applications.

NeXTstep was created to enable developers to
reduce development time dramatically, by making
common things easy to implement and difficult
things possible and maintainable.

In creating NeXTstep, NeXT was guided by the fol-
lowing principles:

• Developers for the 1990’s need an applica-
tion development architecture, not a
collection of poorly integrated tools that
were not designed to work together.

• A complete development architecture
must integrate programming languages,
windowing and graphics systems, user
interface toolkits and class libraries, data-
ba se acce s s t oo l s , and p rog ram
management tools.

• A development platform must provide a
high level of standard functionality that all
developers can depend on, functionality
that will be common to most applications,
leaving developers to write only the code
which is unique to their application.

• Tools should be fully object-oriented to
speed development and simplify mainte-
nance, and all tools should use the same
object description and extension language
that the programming language uses.

• A development environment should
employ the same graphics model for
screen display and hardcopy output, and
all applications should support multifont
text and graphics standards.

• A development environment should
encourage developers to provide high-
quality, consistent graphical user inter-

faces, and interfaces which can be
localized for different foreign languages
without additional coding.

• The development environment should be
well supported by the operating system.
An object-oriented architecture should be
complemented by an optimized messaging
architecture which enables efficient
object-oriented applications.

• Custom applications, because of hooks
into the operating system, should integrate
well with commercial productivity tools.

At NeXT we believe that these principles should be
used to judge the adequacy of any development
platform. Table 1 compares NeXTstep develop-
ment tools and their capabilities to the tools
available on another popular workstation develop-
ment platform, Sun Microsystems.

IV. How NeXTstep Increases Programmer
Productivity

“The strongest selling point for us is the
NeXTstep development environment. It
allows us to develop applications in roughly
one-third the time (this is a blended figure
over many applications). On a NeXT, you
are encouraged, coddled, and brought
quickly up what would otherwise be a diffi-
cult learning curve in making good use of
OOP [object-oriented programming] tech-
nique. This is possible because object ori-
entat ion isn’ t jus t a veneer on the
programming environment. The heart and
soul of the NeXT is object-oriented. This
allowed our developers to become OOP
experts with relatively little pain. The ben-
efits are monumental. It is inconceivable to
me that we would ever go back to the days
of functional programming.”

– Hadar Pedhazur, Vice President, Equities
Technology, Equity Derivative Products, UBS
Securities, Inc.

Faster Application Development

Programmers using NeXTstep's object-oriented
development tools create software five to ten times
faster than with traditional procedural programing
languages. Why? Because NeXTstep programmers
write less code.

5

NeXT Sun

Integrated Tools
Interface Builder manages all files, develops

interfaces, extends class hierarchy,
integrates with Objective-C.

Tools provided by different vendors;
DevGuide only loosely coupled to C;

DevGuide doesn’t support any object-
oriented language or toolkit.

Library of Objects for All
Core Functionality

AppKit manages events, printing, faxing,
and file management.

No applications framework for
common core functionality.

Interface Development
Interface Builder (IB) manipulates live code,

classes, and object messaging; custom
objects can be displayed and manipulated

by IB.

DevGuide lays out interfaces and
generates static code; cannot display

or manipulate custom objects.

Single Imaging Model Display PostScript.
XLIB, NeWS, XGL, pixrects.

No application printing model.

Standard Multimedia Data
Formats

RTF, EPS, TIFF, sound; apps can cut and
paste all of these formats.

No multifont text, sound, or toolkit
support for imaging or data exchange.

Object-Oriented Tools

Optimized for Objective-C, can also use
C++; consistent object framework across all

tools: extension language common to
AppKit and rest of code; run-time binding

allows extensible objects and apps. IB
encourages modularization of program.

Optimized for C; Native C environment
for procedural, not object-oriented

programming; C++ becoming available
but is used procedurally with
DevGuide. DevGuide creates
monolithic non-modular code.

Consistent User
Interfaces

NeXTstep provides complete dialogs in
addition to windows and controls provided
by other systems; makes it easy and natural

to make consistent UI, hard to make
inconsistent UI.

Motif, Open Look tools do not provide
dialogs and panels; developers create
own versions of common UI elements

(e.g., print panels).

Development Tools
Integrated With OS

Object-oriented system software; object
architecture is built on top of Mach

multithreading and messaging.

OS not designed with object-oriented
development or deployment in mind.

Custom Apps Integrate
With Commercial Apps /

Interapplication
Communication

All apps can be messaged and offer
services to other apps; common message

table architecture in all apps; apps can
register ability to provide services with OS;

apps can take advantage of other apps
without knowing anything about their

protocol or architecture.

ToolTalk messaging will be available to
some apps. All applications must know

protocol and architecture of other
applications.

Table 1: NeXTstep vs. Sun Applications Development Environments

6

Being able to use any of the more than one hundred
commonly used objects supplied by the Applica-
tions Kit (AppKit) allows developers to incorporate
features such as spell-checking and multiple fonts
without writing any additional code.

Reduced Learning Time

Unlike C++, Objective-C can be learned quickly.
Programmers familiar with C can learn NeXTstep’s
Objective-C in a just a few hours because it is based
on simple extensions to the C language. In addition,
NeXT’s integrated development tools includes
online documentation stored in NeXT’s Digital
Librarian, and a run-time application inspector to
aid mastery of the NeXT programming environ-
ment. The Application Kit has many well-formed
examples of effective design and efficient code
which help novice NeXTstep programmers learn
object-oriented programming technique.

Improved Maintainability and Reliability

Traditional programming languages produce code
that is difficult to maintain. Changes to one portion
of the code may have unintended consequences
which propagate throughout the application. Thus,
maintaining software written in traditional lan-
guages is often as or more difficult as creating the
application was originally.

Unlike traditional programming languages, object-
oriented programming in Objective-C defines func-
tionality at a high level of abstraction. To use a
window object, for example, the programmer only
needs to know what messages (“Close” or
“Resize”) to send that object–not how the window
object actually works. This means that new objects
can be substituted for less functional or less effi-
cient ones without affecting the rest of the system.
Object orientation protects the program from the
errors common in the “spaghetti code” produced by
traditional programming techniques, where every-
thing is accessible by everything else. Because of
modularity, bugs are located more quickly. And
once fixed, bugs stay fixed, because programmers
find and fix bugs rather than experimentally merely
fixing the symptoms.

Increased Flexibility and Extensibility

The ability to modify objects easily (and optimize
one portion of the application without affecting
other parts) creates greater programming flexibil-

ity. Experimenting with new methods of handling
certain functions in one object will not affect other
objects. Changes can be made while a program is
being developed without introducing delays.

All objects managed by NeXT’s software manage-
ment tool, Interface Builder, can be subclassed for
added functionality. Interface Builder also encour-
ages custom objects to be developed and shared,
then added to the Interface Builder environment,
where they can be graphically manipulated and
managed. Palettes of many kinds of NeXTstep
objects are commercially available from software
companies today.

Reusable Code

NeXT’s object-oriented programming environment
encourages the development of many small func-
t iona l modu les (ob jec t s) , each o f which
accomplishes a clearly defined task. By encourag-
ing the development of these small functional
objects, NeXT’s object orientation adds to the over-
all reliability of development projects, since the
objects have already been proven. (See Figure 1.)

Beyond modularity, reusability of code is promoted
through subclassing and inheritance. Using sub-
classing, programmers can modify an object used
by many groups without rewriting the object from
scratch. By creating a special subclass of an

Figure 1. Reusable Code. This font panel from the
AppKit is reusable across all NeXTstep applications.

7

Figure 2. Subclassing and Inheritance. The
print panel on the right was created as a
subclass of the print panel on the left, inheriting
all of its features.

expense form object which is common to an entire
organization, a departmental approval process that
is unique to one workgroup can be created by add-
ing only a few lines of code, since all the common
attributes will be inherited from the original object.
(See Figure 2.)

Later, as common objects are modified and
updated, all applications relying on them will auto-
matically inherit the updates, modifications, and
improvements. In this way, NeXTstep applications
share fax and print panels that are written only once,
but are used by virtually all applications and which
can be updated without changing the applications
themselves. Because NeXTstep encourage the cre-
ation of extensible and reusable programs,
developers write fewer lines of code.

Manage Greater Complexity

By tracking the messages moving between objects,
developers can track an application’s development
more efficiently. The development team works at a
higher, more abstract level, caring less about how
given objects work internally, concentrating instead
on how the program is modularized into objects
providing key kinds of functionality, and how
objects communicate with each other.

V. NeXTstep: A Complete Object-Oriented
Development Solution

NeXT is the first UNIX workstation vendor to pro-
vide and bundle a rich set of object-oriented
software development tools with its computers.
Unlike other UNIX workstation environments,
NeXT includes all the development tools–editors,
languages, class libraries, class browsers, object
inspectors, a windowing system, and a unified
imaging model– needed to develop sophisticated,
graphical, and truly object-oriented applications.

All of NeXTstep’s tools are designed to work
together to provide a complete, integrated develop-
ment solution. With NeXTstep, a development
team is not burdened with poorly and only partially
integrated class libraries, windowing systems, and
programming languages which are maintained by
different vendors, released at different times, and
designed for different tasks. With NeXTstep, all the
tools work together–optimized and seamless.

Interface Builder. Interface Builder is NeXTstep’s
primary tool for graphical interface development
and project management. Studies have shown that
as much as 90% of development time is devoted to
constructing the user interface. Interface Builder

8

improves programmer productivity with its com-
plete environment for laying out, constructing and
testing user interfaces. (See Figures 3 and 4.)

Even if Interface Builder were no more than the
most advanced interface and layout development
tool on the market, it would have justly earned its
breakthrough reputation on that strength alone. But
Interface Builder is far more than a user interface
tool. It provides powerful software engineering
tools to manage object-oriented software projects.
Interface Builder is:

• A complete object-oriented user interface
development, layout, prototyping, and
testing tool

• An object editor which manages the inter-
face between all objects in the program;
using Interface Builder, the programmer
defines the protocol between objects (the
messages they send each other) whether
they are user interface objects or any other
kinds of objects

• A software management tool, managing
all components of a software project,
including icons, C interface files, source
code modules, and sound and image files;
Interface Builder provides comprehensive
“make” facilities for program construction
and compilation

• A tool that encourages modularity because
of the ease with which a program can be
split into separate modules

• A localization tool which allows develop-
ers to lay out foreign language versions of
their interface and enables an application
to support multiple language interfaces,

thus giving users the ability to run the
application in the language of their choice

• A class hierarchy manager for NeXTstep
classes and classes of objects added by
developers, and a tool for subclassing and
accessing class definitions

• An object and palette manager, allowing
palettes of custom objects to be manipu-
lated in the same way that NeXTstep
Application Kit objects are displayed and
manipulated

Unlike Sun, X/Motif, and Windows screen painters
(which manipulate little more than static bitmap
representations of widgets), Interface Builder
brings live software objects into an application.
These live objects can be interlinked and their
behavior tested, and the entire interface can be
revised in minutes. New objects can be brought into
Interface Builder on custom palettes and then
manipulated, shared, inspected, and used like any
other NeXTstep objects.

Interface Builder involves users in software devel-
opment projects. Interface Builder allows users to
test and comment on the user interface through its
interactive test mode. By providing painless refine-
ment of the user interface early in the development
cycle, Interface Builder helps ensures user partici-
pation and satisfaction.

Objective-C: A Rich Object-Oriented Language.
NeXTstep’s extensive object-oriented program-
ming tools are based on Objective-C, an extension
of standard ANSI C. Objective-C encourages
developers to modularize their code, resulting in
programs that are simpler to write and maintain.
Objective-C combines the efficiency and familiar-

Figure 3. Interface
Builder. Palettes of
‘live’ objects (right)
can be dragged to
windows (left) to
create applications.

9

ity of C with the object-oriented messaging
facilities of Smalltalk–with a only few, easily
learned extensions to ANSI C.

Unlike C++, Objective-C supports run-time bind-
ing, which allows the latest version of an object to
be bound to the application at run time. Applica-
tions are not frozen in time when they are compiled.
Thus as objects gain new functionality, applications
using these objects automatically inherit all of their
new features. For example, when NeXT extended
its print panel to include faxing, all applications
gained the ability to fax documents–even those
commercial applications which had shipped one
year earlier. Through run-time binding, NeXTstep
gains complete extensibility of applications.

In addition, Objective-C’s persistent objects pro-
vide debugging advantages over C++. In C++,
objects only exist at compile time, and code is com-
piled into C. In Objective-C, objects exist at run
time, allowing the developer to send messages to
objects interactively in the same way that compiled
code does. This is very useful for testing messaging
schemes and the overall behavior of an object or
group of objects.

The Application Kit. The Application Kit is
NeXT’s class library of optimized objects. It
includes a set of core objects that provide the frame-
work required by any application, and a powerful
set of interface and support objects that provide
advanced functionality well beyond the windowing
toolkits found in other workstation platforms. In
addition to standard interface objects such as scrol-
lers, cursors, buttons, sliders, windows, and panels,
the Application Kit provides objects for:

• Managing events

• Manipulating text data and editing multi-
font text (including rulers and a complete
spelling checker)

• Selecting colors

• Using standard dialogs (opening and sav-
ing files)

• Managing files

• Displaying TIFF and EPS graphics

• Faxing in Group III format

• Printing in PostScript

• Creating browsers

Figure 4. Interface
Builder. Interface
Builder is used to
manage object
messaging. The
“Open Window”
button in the top
window messages the
bottom window.
Messaging is
represented by the
black line connecting
the button to the
window. On the right
is an inspector giving
the programmer the
choice of legal
messages to send the
window.

10

• Incorporating voice and sound (and a
sound editor)

Everything in the Application Kit is fully extensible
and all of its objects can be subclassed.

A Unified Imaging Model. Having co-developed
Display PostScript with Adobe Systems, Inc.,
NeXT employs PostScript for all imaging, whether
to screen, printer, or imagesetter. Developers need
not worry about supporting two imaging models,
one for screen display and one for printing. Using
Display PostScript as a single imaging model
ensures consistent results and allows developers to
maintain only one set of graphics routines. NeXT
works with the same Adobe Type 1 fonts that are
widely available on devices ranging from desktop
printers to imagesetters.

Support Tools. NeXTstep includes a range of
additional tools: the gdb object-oriented debugger,
MallocDebug (which measures an application’s use
of dynamic memory), PostScript previewing tools,
a choice of UNIX text editors (Edit, a mouse-based
programming editor; emacs; and vi), and AppIn-
spector, which allows programmers to examine
relationships between objects.

Operating System Integration. The NeXTstep
development environment is well supported by
NeXT’s UNIX / Mach operating system.

Mach is NeXT's operating system kernel. Com-
pletely UNIX BSD 4.3 (Berkeley) compatible, it is
the same kernel recently chosen for adoption by the
Open Software Foundation (OSF). Mach offers an
extremely efficient communications-oriented ker-
nel, supporting multiple processors within
computers and multiple threads within applications.
The choice of Mach is consistent with NeXT’s
emphasis on object-oriented development because
Mach is very efficient for messaging the objects
within an application, for interapplications messag-
ing, and for messaging across a network. Unlike
other workstation programming environments,
Mach and NeXTstep’s programming tools were
designed to provide an integrated platform for the
development and use of object-oriented applica-
tions, optimized from the operating system on up.

In addition to full UNIX compatibility at the system
level, NeXT supplies a complete set of familiar
UNIX command line tools, such as awk and sed, as
well as programming utilities like gprof.

VI. Developing With NeXTstep

What languages does NeXTstep support?

NeXTstep/Interface Builder’s native language is
Objective-C, based on ANSI C. Unlike C++,
Objective-C is extremely easy for C programmers
to learn, since it adds only a small set of extensions
to standard C. Beyond ease of learning, NeXT
chose Objective-C because of its support for
dynamic binding. Dynamic binding allows devel-
opers to generalize programs so that they can
handle a wide variety of object types without know-
ing all the possibilities ahead of time.

Third parties support many other languages includ-
ing Pascal, Common Lisp, Ada, Eiffel, BASIC,
FORTRAN, and COBOL. Absoft Corporation’s
object-oriented FORTRAN 77 offers access to stan-
dard UNIX tools and supports Interface Builder.

Developers can access applications written in lan-
guages that do not support Interface Builder
directly. Through interapplications messaging,
NeXTstep allows applications to be written in any
language available on the NeXT platform. Custom
Interface Builder programs can message applica-
tions written in any of these languages; to an end-
user, it appears as if the program and the interface
are one, seamless application.

Will existing C or C++ code have to be
rewritten?

NeXTstep programs can utilize standard ANSI C,
Objective-C, and C++. Included with NeXTstep is
an Objective-C++ compiler. This compiler permits
Objective-C and C++ to access objects written in
either language; links C, Objective-C, and C++ into
one application; and provides symbolic debugging
of C, Objective-C, and C++ using NeXT's debug-
ger. C++ and Objective-C are fully integrated into
Objective-C++. Objective-C can call C++ methods,
and C++ can call Objective-C methods.

While NeXT's own Application Kit will remain
Objective-C based, organizations with a significant
investment in C++ object classes can retain their
investment while capitalizing on NeXTstep's pow-
erful, integrated environment. Much of the core
code of Lotus Improv was written in C++ before
Lotus began its NeXTstep development. Thanks to
Objective-C++, Improv was able to take advantage
of Lotus' existing code base together with the added

11

productivity of NeXTstep. The result is the next
generation of spreadsheets, developed first on the
NeXT Computer.

Does NeXTstep support the standards needed
in mixed computing environments?

Standard UNIX. NeXTstep is based on industry-
standard Berkeley UNIX. Developers can compile
and run UNIX code on a NeXT computer as easily
as on any other computer that is based on UNIX
4.3BSD. NeXT plans to incorporate full POSIX
compliance when BSD UNIX 4.4 is released.

Communications. Every NeXT computer supports
thin coax and twisted-pair 10baseT Ethernet.
NeXT's native support for TCP/IP and Sun's RPC
(Remote Procedure Call) ensure that NeXTstep
applications can support client/server computing.
NeXT supports Sun's Network File System (NFS
4.0) as its own native file system, and its native mail
system is based on industry-standard SMTP (Sim-
ple Mail Transfer Protocol). The third release of
NeXTstep software will support Ethertalk and Nov-
ell client connectivity.

Through third-parties, NeXT computers can access
many remote resources and tools, including AFS
2.0, Wang VS, 3270 and VT100/220 emulation,
DECNET, X/Motif, Banyan, X.25, SLIP, PPP, and
Macintosh file system support. Insignia Solutions
provides full DOS emulation via SoftPC.

As interoperability and networking services and
standards from such organizations as OSF are
defined and gain market acceptance, NeXT will
ensure their support within NeXTstep.

Database Connectivity. A variety of vendors offer
SQL databases for NeXT, including ANSI-SQL
compliant ORACLE DBMS and Sybase SQL
Server. NeXT's Application Kit is being extended
to include a powerful set of database objects so that
programmers can access Sybase, Oracle, and other
SQL databases from within Interface Builder.

Data and File Standards. Native file formats sup-
ported by NeXT include Encapsulated PostScript
(EPS) and TIFF for graphics, and Microsoft’s Rich
Text (RTF) format for text. The NeXT file system
also reads and writes DOS files. And NeXT sup-
ports JPEG compression/decompression and the
ISO 9660 and High Sierra CD-ROM formats.

Are NeXTstep applications portable?

Properly written C, Objective-C, and C++ applica-
tions which separate user interface code from core
functionality are very portable. The porting task is
essentially similar to porting well-modularized
code across other graphical user interfaces such as
Windows, Motif, or the Macintosh. Applications
ported from these environments to NeXTstep, how-
ever, involve less work, because implementing a
user interface in NeXTstep requires significantly
less coding.

Can NeXTstep support client-server
computing? Are NeXTstep applications
scalable?

Through support for TCP/IP, SQL, and Sun's RPC,
NeXTstep applications are client/server ready.
Mach's messaging facility provides very fast inter-
process communications. Through RPC, NeXTstep
applications can support cooperating processes on
networked machines, from local UNIX-based serv-
ers to remote Cray supercomputers. NeXTstep's
messaging facilities provide an ideal mechanism
for integrating easy-to-use interfaces running
locally with compute-intensive code running on
remote cycle-servers, all within an easy-to-main-
tain NeXTstep application framework.

What are the benefits for end-users of NeXTstep
applications?

Faster Time to Market. Organizations relying on
custom applications as their competitive edge gain
substantial benefit if those applications can be
developed and deployed more quickly. In reducing
a new application’s time to market from a year or
longer to a few months, an investment in NeXTstep
and NeXT computers pays for itself quickly–often
within a month after an application has been imple-
mented.

“NeXTstep is a phenomenally productive
environment for proprietary applications
development. We were able to develop a
fully-functional, fixed-income trader’s
workstation in less than three months. In
other environments, it would have taken
two, three, or even four times as long.”

– Robert M. Wilen, Vice President, SBC / OC
Services L.P.

12

Professional-Quality Interfaces. Programmers
can quickly create applications with friendly inter-
faces that are as professional as shrink-wrapped
applications from the major commercial software
houses.

NeXTstep Applications Are Easier to Use.
NeXTstep makes it easy to create user-friendly
graphical user interfaces. And unlike other UNIX
interface development tools, NeXTstep’s Applica-
tion Kit and Interface Builder encourage developers
to create consistent user interfaces based on a com-
mon framework. When users have learned one
NeXTstep application, they have learned the key
elements of most applications: window and menu
selection; file system navigation; font and color
selection; cutting, copying and pasting between
applications; and printing and faxing.

Integration. Being object-oriented and living in an
object-oriented environment, NeXTstep applica-
tions are not standalone programs. All properly
designed NeXTstep applications can cut, copy, and
paste data from other applications, and request ser-
vices from other applications. Any application can,
for example, request services from Webster’s Dic-
tionary or NeXT’s Digital Librarian, or mail
documents to other users. More sophisticated appli-
cations can access remote databases, access
mathematical models in Mathematica, or send
numerical information to Lotus Improv for charting
or analysis. Any custom NeXTstep application can
avail itself of the facilities of many other NeXTstep
applications, including the services of many com-
mercially available tools. In this way, users can
customize their working environment and create an
integrated set of tools, where each new application
adds value to all other tools present on the desktop.

VII. Summary: The NeXTstep Advantage

NeXTstep programmers receive all of the benefits
of object-oriented programming:

• Reduced development time

• Decreased maintenance costs

• Reusability of code

• More robust and flexible applications

But NeXTstep is far more than a simple object-ori-
ented language or toolkit. Beyond the general
benefits of object-oriented languages, NeXTstep
programmers–and only NeXTstep programmers–
benefit from:

• A complete and integrated object-oriented
development platform requiring program-
mers to write less code

• Interface Builder, which allows develop-
ers to assemble and test user interfaces and
other application components in less time
than with traditional methods and tools

• A complete user interface and applications
framework which includes multifont text,
printing, faxing, and file management

• A platform which allows completed appli-
cations to work together

• A platform whose interface tools encour-
age consistency, which leads to reduced
training and learning time and greater sat-
isfaction for end-users

13

VIII.Next Steps

Technology Decisionmakers’ Seminar

For more information on how NeXTstep can be put
to work in your organization, inquire about attend-
ing NeXT’s one-day introduction to NeXTstep, the
Technology Decisionmakers’ Seminar.

Developer Class

To learn more about programming the NeXT com-
puter, NeXT offers Developer Class, a week-long
course in developing object-oriented applications
using NeXTstep.

For information on attending NeXT’s Technology
Decisionmakers’ Seminar or Developer Class, call
1-800 848-NeXT.

Additional Reading

Budd, Timothy, An Introduction to Object-Oriented
Programming, Addison-Wesley, 1991.
Cox, Brad, Object-Oriented Programming: An
Evolutionary Approach, Addison-Wesley, 1991.
Lozinski, Christopher, “Why I Need Objective-C,”
Journal of Object-Oriented Programming, September
1991, pp. 21-28.
NeXT and Open Systems Standards, NeXT Computer,
Inc., 1991.
NeXT Technical Documentation, Addison-Wesley,
1991.
The NeXTstep Advantage, NeXT Computer, Inc.,
1991.
Weiner, Richard S. and Pinson, Lewis J., Objective-C:
Object-Oriented Programming Techniques, Addison-
Wesley, 1991.

